Protein kinase C beta II (PKCβII) activates polymorphonuclear leukocyte (PMN) superoxide (SO) production via NADPH oxidase (NOX-2) phosphorylation to exacerbate myocardial ischemia/reperfusion (I/R) injury. In prior studies, myristoylation (myr) of PKCβII peptide inhibitor (N-myr-SLNPEWNET; myr-PKCβII-), which disrupts PKCβII translocation/phosphorylation of NOX-2, was shown to dose-dependently attenuate PMN SO release induced by phorbol 12-myristate 13-acetate (PMA), a broad-spectrum PKC agonist. However, the role of myr on the inhibitory effects of myr-PKCβII- has yet to be elucidated. We hypothesized that myr-PKCβII peptide activator (N-myr-SVEIWD; myr-PKCβII+) would augment, myr-PKCβII- would attenuate, and scrambled myr-PKCβII- (N-myr-WNPESLNTE; myr-PKCβII-scram), a control for myr, would not affect PMA-induced PMN SO release compared to unconjugated peptides and nontreated controls. Rat PMNs (5х10
6
) were incubated for 15 min at 37
o
C in the presence/absence of SO dismutase (SOD; 10 μg/mL), unconjugated PKCβII+/-, myr-PKCβII+/-, or myr-PKCβII-scram (all 20 μM). SO release was measured by the change in absorbance at 550 nm via ferricytochrome
c
reduction after PMA (100 nM) stimulation for 390 sec. Data were analyzed by ANOVA using Student-Newman-Keuls post hoc analysis. Myr-PKCβII- significantly attenuated SO release (0.30±0.02; n=27; p<0.05) compared to nontreated controls (0.46±0.01; n=73), myr-PKCβII+ (0.46±0.03; n=25), unconjugated PKCβII+ (0.43±0.04; n=15), PKCβII- (0.43±0.02; n=22) and myr-PKCβII-scram (0.65±0.04; n=22). SOD (n=8), which rapidly converts SO to H
2
O
2
, significantly reduced absorbance by 94±7%, indicating that absorbance increased mainly due to PMA stimulation. Cell viability (trypan blue exclusion) was similar in all groups (94±2%). Unexpectedly, myr-PKCβII-scram significantly stimulated the highest increase in absorbance compared to all groups (p<0.01). Future studies will determine whether myr-PKCβII-scram augments absorbance by a different mechanism. Results suggest that myr improves myr-PKCβII- delivery compared to unconjugated PKCβII- but does not affect inhibition of PMA-induced PMN SO release. Myr-PKCβII- may thus effectively limit inflammation-induced I/R injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.