Lens regeneration in vivo is restricted to some urodeles only. After removal of the lens, this remarkable event is initiated from the dorsal iris. The pigmented epithelial cells from the dorsal iris dedifferentiate and subsequently transdifferentiate to form the regenerating lens. This property of the dorsal iris implies specific regulation along the dorsal-ventral axis. To date, no known genes are known to be specifically expressed in the dedifferentiating cells and to be involved in lens regeneration. In this paper, we show that FGFR-1 expression and function is correlated with the process of lens regeneration from the dorsal iris. Following lentectomy, FGFR-1 protein is specifically present in the dedifferentiating pigment epithelial cells in the dorsal iris, but is absent from the ventral iris. Subsequently, FGFR-1 protein is present throughout the process of lens regeneration and fiber differentiation. Furthermore, we show that an FGFR-1-specific inhibitor is able to inhibit the process of transdifferentiation and lens regeneration. In this sense, FGFR-1 can be regarded as the first known lens regeneration-associated factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.