Field experiment were conducted to determine interactions of chlorimuron or imazaquin with fomesafen, lactofen, or acifluorfen on three-leaf and eight-leaf common cocklebur, hemp sesbania, pitted morningglory, and prickly sida. Antagonism was the most common interaction with common cocklebur, and was most severe with chlorimuron combined with fomesafen or acifluorfen, whereas lactofen did not antagonize common cocklebur control. Reductions in control were greater when low rates of chlorimuron were used. On three-leaf prickly sida, control synergistically increased when imazaquin was combined with fomesafen or acifluorfen, but the majority of these combinations were additive on eight-leaf prickly sida. Three-leaf pitted morningglory control synergistically increased when 36 g ai ha–1imazaquin was combined with 210 g ai ha–1fomesafen or 110 or 220 g ai ha–1lactofen. With eight-leaf pitted morningglory, synergism occurred when 2 g ai ha–1chlorimuron was combined with the high rate of any diphenylether herbicide tested, and when 36 g ha–1imazaquin was combined with 110 g ha–1lactofen or 210 g ai ha–1acifluorfen; however, at higher rates of chlorimuron or imazaquin, several antagonistic interactions occurred. Hemp sesbania was controlled over 90% by all combinations, and no interactions occurred.
In the field, 14 soft red winter wheat cultivars responded differently to 1.1 kg ai ha–1diclofop, 1.7 kg ai ha–1BAY SMY 1500, and 0.42 kg ai ha–1metribuzin applied POST. Diclofop and metribuzin did not injure any cultivar more than 10% on a silty clay soil. However, BAY SMY 1500 injured ‘Pioneer 2551’ and ‘Coker 983’ 39 and 21%, respectively, in March. All other cultivars were injured less than 10% by BAY SMY 1500. Early injury did not translate into yield loss in the cultivar tolerance study. In an application timing study for Italian ryegrass control, late-season ratings indicated better control with two-leaf applications than with PRE applications for all treatments. Delaying application to the three-tiller stage reduced control with BAY SMY 1500 or metribuzin, but not with diclofop. On the sandier soil at this location, wheat injury with 0.28 or 0.43 kg ha–1metribuzin or 2.2 kg ha–1BAY SMY 1500 was sufficient to reduce wheat yield compared with other treatments, despite good Italian ryegrass control.
The acetolactate synthase-inhibiting herbicides chlorimuron and imazaquin, and the diphenylether herbicides acifluorfen and lactofen, were applied alone and in all possible combinations to the foliage of common cocklebur, pitted morningglory, and prickly sida to evaluate interacting effects on absorption and translocation. The addition of unlabeled acifluorfen to14C-chlorimuron increased absorption in common cocklebur, pitted morningglory, and prickly sida. Lactofen also increased absorption of14C-imazaquin in all species. Conversely, imazaquin reduced absorption or translocation of14C-acifluorfen in common cocklebur or pitted morningglory, respectively. In all species, absorption was lower when unlabeled chlorimuron or imazaquin was combined with14C-lactofen than when applied alone.
Optimizing overhead irrigation practices will ensure that water loss is minimized, and each unit of water is used most effectively by the crop. In order to optimize overhead irrigation setup, a study was conducted over two years in Mississippi to quantify the optimal overhead irrigation duration and intensity for six soil types commonly found in row-crop production regions in the state. Each soil type was transferred to containers and measured for total water infiltration and water infiltration over time using a two-nozzle rainfall simulator in a track sprayer. The rainfall simulator was calibrated to apply 2.1 mm of water per minute. The rainfall simulator ran on a 2.4 m track for 90 s, with 3.2 mm total water applied during that time. After the 90 s overhead irrigation event, each container was undisturbed for 150 s and assessed for irrigation penetration through the soil profile. Commercially available irrigation nozzles were measured for droplet size spectrum. Results showed that across soil type, organic matter was the primary factor affecting water infiltration through the profile, followed by soil texture. Irrigation nozzle volumetric median droplet sizes ranged from 327 µm to 904 µm. The results will improve overhead irrigation setup in Mississippi, improving irrigation water use efficiency and reducing losses from soil erosion over the application of water and reduced crop yield.
Hairy buttercup and cutleaf evening-primrose are winter annual weeds that have become more problematic for winter wheat growers in the Southern Great Plains and the Mid-Southern United States in recent years. Little research exists to base recommendations for controlling hairy buttercup in wheat, and little research has been published on cutleaf evening-primrose control in recent years. With growing concerns of increased herbicide resistance among winter annual weeds, incorporating new herbicide sites of action has become necessary. The objective of this study was to assess halauxifen-methyl as a novel herbicide to control these two problematic winter annual broadleaf weeds in winter wheat in Mississippi and Oklahoma. Studies were conducted across four site-years in Mississippi and one site-year in Oklahoma comparing fifteen herbicide programs with and without halauxifen-methyl. Hairy buttercup and cutleaf evening-primrose control was the greatest when a synthetic auxin was combined with an acetolactate synthase (ALS) inhibiting herbicide. Treatments including halauxifen-methyl resulted in the greatest control of hairy buttercup, whereas a synthetic auxin herbicide plus chlorsulfuron and metsulfuron resulted in the greatest control of cutleaf evening-primrose. Halauxifen-methyl is an effective addition for control of winter annual broadleaf weeds like hairy buttercup and cutleaf evening-primrose in winter wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.