Thanks to recent advances in wireless technology, a broad range of standards are currently emerging. Interoperability and coexistence between these heterogeneous networks are becoming key issues, which require new adaptation strategies to avoid harmful interference. In this paper, we focus on the coexistence of 802.11 Wireless LAN and 802.15.4 sensor networks in the ISM band. Those networks have very different transmission characteristics that result in asymmetric interference patterns. We propose distributed adaptation strategies for 802.15.4 nodes, to minimize the impact of the 802.11 interference. This interference varies in time, frequency and space and the sensor nodes adapt by changing their frequency channel selection over time. Different distributed techniques are proposed, based on scanning (with increasing power cost) on the one hand, and based on increased cognition through learning on the other hand. These techniques are evaluated both for performance and energy cost. We show that it is possible to achieve distributed frequency allocation approaches that result only in an increase of 20% of the delay performance compared to ideal frequency allocation. Moreover, it is shown that a factor of two in energy consumption can be saved by adding learning to the system
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.