Functional neuroimaging studies have started unravelling unexpected functional attributes for the posteromedial portion of the parietal lobe, the precuneus. This cortical area has traditionally received little attention, mainly because of its hidden location and the virtual absence of focal lesion studies. However, recent functional imaging findings in healthy subjects suggest a central role for the precuneus in a wide spectrum of highly integrated tasks, including visuo-spatial imagery, episodic memory retrieval and self-processing operations, namely first-person perspective taking and an experience of agency. Furthermore, precuneus and surrounding posteromedial areas are amongst the brain structures displaying the highest resting metabolic rates (hot spots) and are characterized by transient decreases in the tonic activity during engagement in non-self-referential goal-directed actions (default mode of brain function). Therefore, it has recently been proposed that precuneus is involved in the interwoven network of the neural correlates of self-consciousness, engaged in self-related mental representations during rest. This hypothesis is consistent with the selective hypometabolism in the posteromedial cortex reported in a wide range of altered conscious states, such as sleep, drug-induced anaesthesia and vegetative states. This review summarizes the current knowledge about the macroscopic and microscopic anatomy of precuneus, together with its wide-spread connectivity with both cortical and subcortical structures, as shown by connectional and neurophysiological findings in non-human primates, and links these notions with the multifaceted spectrum of its behavioural correlates. By means of a critical analysis of precuneus activation patterns in response to different mental tasks, this paper provides a useful conceptual framework for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated. Specifically, activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus into an anterior region, involved in self-centred mental imagery strategies, and a posterior region, subserving successful episodic memory retrieval.
INTRODUCTION-In the latest edition of our series of neuroanatomical areas of importance for neuropsychiatry, Wayne Drevets, MD, and Jonathan Savitz, PhD, have outlined the clinical importance of the ventral anterior cingulate structures for the regulation of mood. This area was an early target for interventional neurosurgery for depression some half a century ago, and today has become one of the key sites of deep brain stimulation for affective disorders. The anterior cingulate cortex was a part of the initial circuit of Papez thought to be related to the regulation of emotion. However, since then, much experimental work has outlined different cingulate regions with differing anatomical connectivity and functions. Drevets and Savitz draw attention to the subgenual area and describe the local and distant anatomical connectivities that emphasize its relevance for several neuropsychiatric disorders.
Several studies have assessed the prevalence of psychiatric disorders in epilepsy. They are characterized by considerable heterogeneity, because of differences in the population setting and type of study. A non-systematic review of the literature allows us to draw some useful, although not definite, conclusions. Six per cent of people with epilepsy in the general population appear to suffer from a psychiatric disorder, while this rises to 10-20% in populations with temporal lobe and/or refractory epilepsy. Mood disorders are the most common culprit (24-74%), particularly depression (30%), followed by anxiety disorders (10-25%), psychoses (2-7%) and personality disorders (1-2%). This comorbidity appears to be related to endogenous and exogenous (including iatrogenic) factors and to the severity and chronicity of epilepsy. Conditions such as schizophrenia-like psychosis of epilepsy and interictal dysphoric disorder are represented only in epilepsy. Adequate recognition and treatment of psychiatric conditions in epilepsy is essential for patient management because of their considerable burden in morbidity and quality of life.
We examined neural activity related to modulation of skin conductance level (SCL), an index of sympathetic tone, using functional magnetic resonance imaging (fMRI) while subjects performed biofeedback arousal and relaxation tasks. Neural activity within the ventromedial prefrontal cortex (VMPFC) and the orbitofrontal cortex (OFC) covaried with skin conductance level (SCL), irrespective of task. Activity within striate and extrastriate cortices, anterior cingulate and insular cortices, thalamus, hypothalamus and lateral regions of prefrontal cortex reflected the rate of change in electrodermal activity, highlighting areas supporting transient skin conductance responses (SCRs). Successful performance of either biofeedback task (where SCL changed in the intended direction) was associated with enhanced activity in mid-OFC. The findings point to a dissociation between neural systems controlling basal sympathetic tone (SCL) and transient skin conductance responses (SCRs). The level of activity in VMPFC has been related to a default mode of brain function and our findings provide a physiological account of this state, indicating that activity within VMPFC and OFC reflects a dynamic between exteroceptive and interoceptive deployment of attention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.