Abstract-A novel solution of the inverse Frobenius-Perron problem for constructing semi-Markov chaotic maps with prescribed statistical properties is presented. The proposed solution uses recursive Markov state disaggregation to construct an ergodic map with a piecewise constant invariant density function that approximates an arbitrary probability distribution over a compact interval. The solution is novel in the sense that it provides greater freedom, as compared to existing analytic solutions, in specifying the autocorrelation function of the semiMarkov map during its construction. The proposed solution is demonstrated by constructing multiple chaotic maps with invariant densities that provide an increasingly accurate approximation of the asymmetric beta probability distribution over the unit interval. It is demonstrated that normalised autocorrelation functions with components having different rates of decay and which alternate in sign between consecutive delays may be specified. It is concluded that the flexibility of the proposed solution facilitates its application towards modelling of random signals in various contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.