Stream ciphers usually employ some sort of pseudorandomly generated bit strings to be added to the plaintext. The cryptographic properties of such a sequence a can be stated in terms of the so-called linear complexity profile, it is called (almost) perfect. This paper examines first those subsets
Our concern is the behaviour of the elementary cellular automata with state set 0,1 over the cell set Z/nZ (one-dimensional finite wrap-around case), under all possible update rules (asynchronicity). Over the torus Z/nZ (n<= 11),we will see that the ECA with Wolfram rule 57 maps any v in F_2^n to any w in F_2^n, varying the update rule. We furthermore show that all even (element of the alternating group) bijective functions on the set F_2^n = 0,...,2^n-1, can be computed by ECA57, by iterating it a sufficient number of times with varying update rules, at least for n <= 10. We characterize the non-bijective functions computable by asynchronous rules
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.