We provide formulas for invariants defined on a tensor product of defining representations of unitary groups, under the action of the product group. This situation has a physical interpretation, as it is related to the quantum mechanical state space of a multi-particle system in which each particle has finitely many outcomes upon observation. Moreover, these invariant functions separate the entangled and unentangled states, and are therefore viewed as measurements of quantum entanglement.When the ranks of the unitary groups are large, we provide a graph theoretic interpretation for the dimension of the invariants of a fixed degree. We also exhibit a bijection between isomorphism classes of finite coverings of connected simple graphs and a basis for the space of invariants. The graph coverings are related to branched coverings of surfaces.
Abstract.The notion of a special «-limit point is defined. For maps of the interval, it is shown that a point is a special a-limit point if and only if it is an element of the attracting center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.