Structure-guided
design was used to generate a series of noncovalent
inhibitors with nanomolar potency against the papain-like protease
(PLpro) from the SARS coronavirus (CoV). A number of inhibitors exhibit
antiviral activity against SARS-CoV infected Vero E6 cells and broadened
specificity toward the homologous PLP2 enzyme from the human coronavirus
NL63. Selectivity and cytotoxicity studies established a more than
100-fold preference for the coronaviral enzyme over homologous human
deubiquitinating enzymes (DUBs), and no significant cytotoxicity in
Vero E6 and HEK293 cell lines is observed. X-ray structural analyses
of inhibitor-bound crystal structures revealed subtle differences
between binding modes of the initial benzodioxolane lead (15g) and the most potent analogues 3k and 3j, featuring a monofluoro substitution at para and meta positions
of the benzyl ring, respectively. Finally, the less lipophilic bis(amide) 3e and methoxypyridine 5c exhibit significantly
improved metabolic stability and are viable candidates for advancing
to in vivo studies.
The depletion of disruptive variation caused by purifying natural selection (constraint) has been widely used to investigate protein-coding genes underlying human disorders, but attempts to assess constraint for non-protein-coding regions have proven more difficult. Here we aggregate, process, and release a dataset of 76,156 human genomes from the Genome Aggregation Database (gnomAD), the largest public open-access human genome reference dataset, and use this dataset to build a mutational constraint map for the whole genome. We present a refined mutational model that incorporates local sequence context and regional genomic features to detect depletions of variation across the genome. As expected, protein-coding sequences overall are under stronger constraint than non-coding regions. Within the non-coding genome, constrained regions are enriched for known regulatory elements and variants implicated in complex human diseases and traits, facilitating the triangulation of biological annotation, disease association, and natural selection to non-coding DNA analysis. More constrained regulatory elements tend to regulate more constrained protein-coding genes, while non-coding constraint captures additional functional information underrecognized by gene constraint metrics. We demonstrate that this genome-wide constraint map provides an effective approach for characterizing the non-coding genome and improving the identification and interpretation of functional human genetic variation.
The Mycobacterium tuberculosis (Mtb) DosRST two-component regulatory system promotes the survival of Mtb during non-replicating persistence (NRP). NRP bacteria help drive the long course of tuberculosis therapy; therefore, chemical inhibition of DosRST may inhibit the ability of Mtb to establish persistence and thus shorten treatment. Using a DosRST-dependent fluorescent Mtb reporter strain, a whole-cell phenotypic high-throughput screen of a ∼540,000 compound small-molecule library was conducted. The screen discovered novel inhibitors of the DosRST regulon, including three compounds that were subject to follow-up studies: artemisinin, HC102A and HC103A. Under hypoxia, all three compounds inhibit Mtb-persistence-associated physiological processes, including triacylglycerol synthesis, survival and antibiotic tolerance. Artemisinin functions by disabling the heme-based DosS and DosT sensor kinases by oxidizing ferrous heme and generating heme-artemisinin adducts. In contrast, HC103A inhibits DosS and DosT autophosphorylation activity without targeting the sensor kinase heme.
We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.