Structure-guided
design was used to generate a series of noncovalent
inhibitors with nanomolar potency against the papain-like protease
(PLpro) from the SARS coronavirus (CoV). A number of inhibitors exhibit
antiviral activity against SARS-CoV infected Vero E6 cells and broadened
specificity toward the homologous PLP2 enzyme from the human coronavirus
NL63. Selectivity and cytotoxicity studies established a more than
100-fold preference for the coronaviral enzyme over homologous human
deubiquitinating enzymes (DUBs), and no significant cytotoxicity in
Vero E6 and HEK293 cell lines is observed. X-ray structural analyses
of inhibitor-bound crystal structures revealed subtle differences
between binding modes of the initial benzodioxolane lead (15g) and the most potent analogues 3k and 3j, featuring a monofluoro substitution at para and meta positions
of the benzyl ring, respectively. Finally, the less lipophilic bis(amide) 3e and methoxypyridine 5c exhibit significantly
improved metabolic stability and are viable candidates for advancing
to in vivo studies.
Highlights d We identified ALDH1A family inhibitors (ALDH1Ai) that target CD133 + ovarian CSCs d ALDH1Ai triggers calcium-dependent cell-programmed necrosis d ALDH1Ai induces mitochondrial uncoupling proteins affecting cellular metabolism d ADH1Ai overcomes chemotherapy resistance to increase tumor eradication
Arboviral encephalitis is a potentially devastating human disease with no approved therapies that target virus replication. We previously discovered a novel class of thieno[3,2-b]pyrrole-based inhibitors active against neurotropic alphaviruses such as western equine encephalitis virus (WEEV) in cultured cells. In this report we describe initial development of these novel antiviral compounds, including bioisosteric replacement of the 4H-thieno[3,2-b]pyrrole core with indole to improve metabolic stability and the introduction of chirality to assess target enantioselectivity. Selected modifications enhanced antiviral activity while maintaining low cytotoxicity, increased stability to microsomal metabolism, and also revealed striking enantiospecific activity in cultured cells. Furthermore, we demonstrate improved outcomes (both symptoms and survival) following treatment with indole analog 9h (CCG-203926) in an in vivo mouse model of alphaviral encephalitis that closely correlate with the enantiospecific in vitro antiviral activity. These results represent a substantial advancement in the early preclinical development of a promising class of novel antiviral drugs against virulent neurotropic alphaviruses.
Neurotropic alphaviruses, which include western equine encephalitis virus (WEEV) and Fort Morgan virus, are mosquito-borne pathogens that infect the central nervous system causing acute and potentially fatal encephalitis. We previously reported a novel series of indole-2-carboxamides as alphavirus replication inhibitors, one of which conferred protection against neuroadapted Sindbis virus infection in mice. We describe here further development of this series resulting in 10-fold improvement in potency in a WEEV replicon assay and up to 40-fold increases in half-lives in mouse liver microsomes. Using a rhodamine123 uptake assay in MDR1-MDCKII cells we were able to identify structural modifications that markedly reduce recognition by P-glycoprotein, the key efflux transporter at the blood brain barrier. In a preliminary mouse PK study we were able to demonstrate that two new analogs could achieve higher and/or longer plasma drug exposures than our previous lead, and that one compound achieved measurable drug levels in the brain.
Silicon-containing compounds have been largely ignored in drug design and development, despite their potential to improve not only the potency but also the physicochemical and ADMET (absorption, distribution, metabolism, excretion, toxicity) properties of drug-like candidates because of the unique characteristics of silicon. This deficiency is in large part attributable to a lack of general methods for synthesizing diverse organosilicon structures. Accordingly, a new building block strategy has been developed that diverges from traditional approaches to incorporation of silicon into drug candidates. Flexible, multi-gram-scale syntheses of silicon-containing tetrahydroquinoline and tetrahydroisoquinoline building blocks are described, along with methods by which diversely functionalized silicon-containing nitrogen heterocycles can be rapidly built using common reactions optimized to accommodate the properties of silicon. Furthermore, to better clarify the liabilities and advantages of silicon incorporation, select compounds and their carbon analogues were challenged in ADMET-focused biological studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.