A set of shuttle vectors was constructed to facilitate expression of genes for metabolic engineering in Saccharomyces cerevisiae. Selectable markers include the URA3, TRP1, MET15, LEU2-d8, HIS3 and CAN1 genes. Differential expression of genes can be achieved as each marker is available on both CEN/ARS-and 2 µ-containing plasmids. Unique restriction sites downstream of TEF1, PGK1 or HXT7-391 promoters and upstream of the CYC1 terminator allow insertion of open-reading frame cassettes for expression. Furthermore, a fragment appropriate for integration into the genome via homologous recombination can be readily generated in a polymerase chain reaction. Vector marker genes are flanked by loxP recognition sites for the CreA recombinase to allow efficient site-specific marker deletion and recycling. Expression and copy number were characterized for representative high-and low-copy vectors carrying the different marker and promoter sequences. Metabolic engineering typically requires the stable introduction of multiple genes and genomic integration is often preferred. This requires an expanded number of stable expression sites relative to standard gene expression studies. This study demonstrated the practicality of polymerase chain reaction amplification of an expression cassette and genetic marker, and subsequent replacement of endogenous retrotransposons by homologous recombination with flanking sequences. Such reporters were expressed comparably to those inserted at standard integration loci. This expands the number of available characterized integration sites and demonstrates that such sites provide a virtually inexhaustible pool of integration targets for stable expression of multiple genes. Together these vectors and expression loci will facilitate combinatorial gene expression for metabolic engineering.
A set of vectors was constructed that enable combined and systematic testing of metabolic pathway genes in Saccharomyces cerevisiae. The vectors are available as CEN/ARS and 2 m-based plasmids with a choice of three inducible promoters, P GAL1 , P CUP1 and P ADH2 . These features offer control over the initiation and level of gene expression. In addition, the vectors can be used as templates to generate PCR fragments for targeted chromosomal integration of gene expression cassettes. Selection markers are flanked by loxP elements to allow efficient CreA-mediated marker removal and recycling after genomic integration. For each promoter, expression of a bacterial lacZ reporter gene was characterized from plasmid-based and integrated chromosomal cassettes, and compared to that of the glycolytic P PGK1 promoter. Plasmid stabilities were also determined. The promoters showed distinct activity profiles useful for modulating expression of metabolic pathway genes. This series of plasmids with inducible promoters extends our previous vector set carrying the constitutive promoters P PGK1 , P TEF1 and P HXT7-391 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.