The experiments conducted on tonoplast of Beta vulgaris L. roots were performed to identify detergent-resistant lipid-protein microdomains (DRMs, interpreted as lipid rafts).The presence of DRMs can be found when dynamic clustering of sphingolipids, sterols, saturated fatty acids is registered, and the insolubility of these microdomains in nonionic detergents at low temperatures is proven. The elucidation of tonoplast microdomains has been based on results obtained with the aid of high-speed centrifuging in the sucrose gradient. The experiments have shown that tonoplast microdomains are rich in sphingolipids, free sterols and saturated fatty acids (such a lipid content is also typical of lipid-protein microdomains of other membranes), while only few phospholipids are present in tonoplast microdomains. The presence of microdomains has been confirmed by fluorescence and confocal microscopy using filipin and Laurdan as fluorescent probes. The experiments with Laurdan have shown that tonoplast microdomains are characterized by a high order compared to characteristics of the rest of the tonoplast. Thus, the presence of detergent-resistant lipid-protein microdomains in the tonoplast has been demonstrated.
Peculiar properties of morphological structures of organelle membranes were studied by fluorescent confocal microscopy. The list of objects in our experiments was represented by mitochondria, chloroplasts and vacuoles. During this study, identification of lipid microinclusions having the form of such lipid-protein structural microformations as lipid-protein microdomains, vesicles and membrane tubular structures (cytoplasmic transvacuolar strands and nanotubes) located in organelle membranes or bound up with them was conducted. Such membrane probes as laurdan, DPH, ANS and bis-ANS were used. Comparison of fluorescence intensity of these membrane probes was conducted. This investigation of the morphological properties of lipid-protein structural microformations was accompanied with analysis of 1) the phase state and 2) dynamics of microviscosity variations in the membrane elements of isolated plant cell organelles. Distributions of laurdan fluorescence generalized polarization (GP) values for the membrane on the whole and for the intensively fluorescing membrane segments were obtained. It was discovered that the microviscosity of intensively fluorescing membrane segments essentially differed from the microviscosity of the rest part of the membrane. In conclusion, some results of the study of peculiar properties of lipid-protein structural microformations related to the structure of organelle membranes and the discoveries made in this investigation are discussed.
Keywords
Halophytes represent important models for studying the key mechanisms of salt tolerance. One approach to the development of new knowledge of salt tolerance is to study the properties of detergent-resistant membranes (DRMs). In this work, the lipid profiles of DRMs of chloroplasts and mitochondria of euhalophyte Salicornia perennans Willd, before and after their exposure to shock concentrations of NaCl, have been investigated. We found that DRMs of chloroplasts are enriched in cerebrosides (CERs) and that sterols (STs) dominate the mass of mitochondrial DRMs. Also, it has been proven that (i) the impact of salinity provokes obvious growth in the content of CERs in DRMs of chloroplasts; (ii) the content of STs in DRMs of chloroplasts does not change under the influence of NaCl; (iii) salinity also causes some elevation in the content of monounsaturated and saturated fatty acids (FAs). Considering the fact that DRMs represent integral parts of both chloroplast and mitochondrial membranes, the authors have come to the conclusion that the cells of euhalophyte S. perennans, under the impact of salinity, presumes the choice (by the cell) of some specific composition of lipids and FAs in the membrane. This may be considered as a specific protection reaction of the plant cell against salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.