The characteristics of asphalt concrete materials (ACM) composing the surfacing layer of a bituminous pavement must fulfil a requirement to maintain a level of operational capability demanded by national standards of a given country. ACM’s are a subject to significant stress caused by traffic load and climate conditions, this leads to changes in their physico-mechanical properties. The loss of physico-mechanical properties causes deterioration of road surface characteristics. Since these changes occur throughout the ACM’s life cycle, it is necessary to know the deterioration curves related to loading and time in mathematical terms, i.e. functions describing the initiation and progression of pavement’s defect in time. Pavement Performance Models (PPM) ascertained by non-destructive testing are used to objectively express the surface properties of pavements and their deterioration. The methodology consists of an analytical method to ascertain physico-mechanical characteristics of ACM’s and the use of experimental accelerated pavement testing (APT) facilities.
Mathematical expression of the deterioration of individual pavement parameters is, from the point of optimal repair and maintenance strategy decision-making process, an important part of the application of any pavement management system (PMS). The reliability of individual PMS depends on the quality of the inputs and the reliability of its internal sub-systems; thus, deterioration equations derived from high-quality input data play pivotal roles in a system for the prediction of the pavement life cycle. This paper describes the application of pavement performance models within pavement life cycle analysis (LCA) with the use of the integrated system of economic evaluation (ISEH), which is a calculation tool used for first-class roads with a standardized pavement composition of asphalt binders, where changes in operational capability parameters are modeled using individual model simulations. The simulations presented in this paper demonstrate changes in main economic indicators (net present value and internal rate of return) on two different pavement performance models. Both simulations share the same input parameters (traffic intensity, construction intervention, maintenance costs, discount rate) but differ in deterioration evaluation, all of which were applied to each model (a total of five models).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.