The conserved TREX mRNA export complex is known to contain UAP56, Aly, Tex1, and the THO complex. Here, we carried out proteomic analysis of immunopurified human TREX complex and identified the protein CIP29 as the only new component with a clear yeast relative (known as Tho1). Tho1 is known to function in mRNA export, and we provide evidence that CIP29 likewise functions in this process. Like the known TREX components, a portion of CIP29 localizes in nuclear speckle domains, and its efficient recruitment to mRNA is both splicingand cap-dependent. We show that UAP56 mediates an ATP-dependent interaction between the THO complex and both CIP29 and Aly, indicating that TREX assembly is ATP-dependent. Using recombinant proteins expressed in Escherichia coli, we show that UAP56, Aly, and CIP29 form an ATP-dependent trimeric complex, and UAP56 bridges the interaction between CIP29 and Aly. We conclude that the interaction of two conserved export proteins, CIP29 and Aly, with UAP56 is strictly regulated by ATP during assembly of the TREX complex. . In yeast, the THO complex consists of four tightly associated subunits (Tho2, Hpr1, Mft1, and Thp1) (Piruat and Aguilera 1998;Jimeno et al. 2006). Likewise, the metazoan THO complex consists of a set of tightly associated proteins, three of which (fSAP79, fSAP35, and fSAP24; known now as THOC5, THOC6, and THOC7, respectively) do not appear to be conserved in yeast and two of which are orthologs of Tho2 (THOC2) and Hpr1 (THOC1) (Rehwinkel et al. 2004;Masuda et al. 2005). In yeast, Aguilera and coworkers (Piruat and Aguilera 1998) identified a protein known as Tho1 during the same genetic screen that they used to identify the THO complex. Subsequent characterization of Tho1 revealed that it functions in mRNP biogenesis and export, but this protein was not identified as a component of the THO/TREX complex (Piruat and Aguilera 1998;Jimeno et al. 2006). However, Tho1 is a multicopy suppressor of THO complex mutants and is recruited to mRNA in a THO complex-dependent manner (Piruat and Aguilera 1998;Jimeno et al. 2006). In humans, a counterpart of yeast Tho1 was identified based on sequence alignment (Jimeno et al. 2006). This protein, CIP29, was first reported as a cytokine-induced protein and later was linked to several cancers (Choong et al. 2001;Fukuda et al. 2002;Hashii et al. 2004;Leaw et al. 2004). Like yeast Tho1, CIP29 contains a SAF motif and binds to DNA, which led to the speculation that CIP29 functions in transcription (Aravind and Koonin 2000; Hashii et al. 2004).3 Corresponding author. E-MAIL rreed@hms.harvard.edu; FAX (617) 432-3091. Article is online at http://www.genesdev.org/cgi
The exosome complex is a key component of the cellular RNA surveillance machinery and is required for normal 3′ end processing of many stable RNAs. Exosome activity requires additional factors such as the Ski or TRAMP complexes to activate the complex or facilitate substrate binding. Rrp47p promotes the catalytic activity of the exosome component Rrp6p, but its precise function is unknown. Here we show that recombinant Rrp47p is expressed as an apparently hexameric complex that specifically binds structured nucleic acids. Furthermore, pull-down assays demonstrated that Rrp47p interacts directly with the N-terminal region of Rrp6p that contains the functionally uncharacterized PMC2NT domain. Strains expressing a mutant form of Rrp6p lacking the N-terminal region failed to accumulate Rrp47p at normal levels, exhibited a slow growth phenotype characteristic of rrp47-Δ mutants and showed RNA processing defects consistent with loss of Rrp47p function. These findings suggest Rrp47p promotes Rrp6p activity by facilitating binding via the PMC2NT domain to structural elements within RNA. Notably, characterized Rrp6p substrates such as the 5.8S+30 species are predicted to contain helices at their 3′ termini, while others such as intergenic or antisense cryptic unstable transcripts could potentially form extensive double-stranded molecules with overlapping mRNAs.
Cancer testis antigens (CTAs) represented a poorly characterized group of proteins whose expression is normally restricted to testis but are frequently up-regulated in cancer cells. Here we show that one CTA, Luzp4, is an mRNA export adaptor. It associates with the TREX mRNA export complex subunit Uap56 and harbours a Uap56 binding motif, conserved in other mRNA export adaptors. Luzp4 binds the principal mRNA export receptor Nxf1, enhances its RNA binding activity and complements Alyref knockdown in vivo. Whilst Luzp4 is up-regulated in a range of tumours, it appears preferentially expressed in melanoma cells where it is required for growth.
PURPOSE Breast and ovarian tumors in germline BRCA1/2 carriers undergo allele-specific loss of heterozygosity, resulting in homologous recombination deficiency (HRD) and sensitivity to poly-ADP-ribose polymerase (PARP) inhibitors. This study investigated whether biallelic loss and HRD also occur in primary nonbreast/ovarian tumors that arise in germline BRCA1/2 carriers. METHODS A clinically ascertained cohort of BRCA1/2 carriers with a primary nonbreast/ovarian cancer was identified, including canonical (prostate and pancreatic cancers) and noncanonical (all other) tumor types. Whole-exome sequencing or clinical sequencing results (n = 45) were analyzed. A pan-cancer analysis of nonbreast/ovarian primary tumors from germline BRCA1/2 carriers from The Cancer Genome Atlas (TCGA, n = 73) was used as a validation cohort. RESULTS Ages of nonbreast/ovarian cancer diagnosis in germline BRCA1/2 carriers were similar to controls for the majority of cancer types. Nine of 45 (20%) primary nonbreast/ovarian tumors from germline BRCA1/2 carriers had biallelic loss of BRCA1/2 in the clinical cohort, and 23 of 73 (32%) in the TCGA cohort. In the combined cohort, 35% and 27% of primary canonical and noncanonical BRCA tumor types, respectively, had biallelic loss. High HRD scores (HRDex > 42) were detected in 81% of tumors with biallelic BRCA loss compared with 22% ( P < .001) of tumors without biallelic BRCA loss. No differences in genomic profile, including mutational signatures, mutation spectrum, tumor mutational burden, or microsatellite instability, were found in primary nonbreast/ovarian tumors with or without biallelic BRCA1/2 loss. CONCLUSION A proportion of noncanonical primary tumors have biallelic loss and evidence of HRD. Our data suggest that assessment of biallelic loss and HRD could supplement identification of germline BRCA1/2 mutations in selection of patients for platinum or PARP inhibitor therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.