The Directive 2010/63 EU requires classifying burden and severity in all procedures using laboratory animals. This study evaluated the severity of liver fibrosis induction by intraperitoneal carbon tetrachloride (CCl4) injections in mice. 29 male C57BL/6N mice were treated three times per week for 4 weeks with an intraperitoneal injection (50 µl) of either 0.6 ml/kg body weight CCl4-vehicle solution, germ oil (vehicle-control) or handling only. Severity assessment was performed using serum analysis, behavioral tests (open field test, rotarod, burrowing and nesting behavior), fecal corticosterone metabolite (FCM) measurement, and survival. The most significant group differences were noticed in the second week of treatment when the highest AST (1463 ± 1404 vs. 123.8 ± 93 U/L, p < 0.0001) and nesting values were measured. In addition, respective animals showed lower moving distances (4622 ± 1577 vs. 6157 ± 2060 cm, p < 0.01) and velocity in the Open field, identified as main factors in principal component analysis (PCA). Overall, a 50% survival rate was observed within the treatment group, in which the open field performance was a good tracer parameter for survival. In summary, this study demonstrates the feasibility of assessing severity in mice using behavioral tests and highlight the open field test as a possible threshold parameter for risk assessment of mortality.
Severity assessment in animals is an ongoing field of research. In particular, the question of objectifiable and meaningful parameters of score-sheets, as well as their best combination, arise. This retrospective analysis investigates the suitability of a score-sheet for assessing severity and seeks to optimise it for predicting survival in 89 male Sprague Dawley rats (Rattus norvegicus), during an experiment evaluating the influence of liver cirrhosis by bile duct ligation (BDL) on vascular healing. The following five parameters were compared for their predictive power: (i) overall score; (ii) relative weight loss; (iii) general condition score; (iv) spontaneous behaviour score; and (v) the observer’s assessment whether pain might be present. Suitable cut-off values of these individual parameters and the combination of multiple parameters were investigated. A total of ten rats (11.2%; 10/89) died or had to be sacrificed at an early stage due to pre-defined humane endpoints. Neither the overall score nor any individual parameter yielded satisfactory results for predicting survival. Using retrospectively calculated cut-off values and combining the overall score with the observer’s assessment of whether the animal required analgesia (dipyrone) for pain relief resulted in an improved prediction of survival on the second post-operative day. This study demonstrates that combining score parameters was more suitable than using single ones and that experienced human judgement of animals can be useful in addition to objective parameters in the assessment of severity. By optimising the score-sheet and better understanding the burden of the model on rats, this study contributes to animal welfare.
Tissue adhesives constitute a great possibility to improve conventional wound closure. In contrast to sutures, they enable nearly immediate hemostasis and can prevent fluid or air leaks. In the present study, a poly(ester)urethane-based adhesive was investigated which already proved to be suitable for different indications, such as reinforcing vascular anastomosis and sealing liver tissue. Using in vitro and in vivo setups, the degradation of the adhesives was monitored over a period of up to 2 years, to evaluate long-term biocompatibility and determine degradation kinetics. For the first time, the complete degradation of the adhesive was documented. In subcutaneous locations, tissue residues were found after 12 months and in intramuscular locations, tissue degradation was complete after about 6 months. A detailed histological evaluation of the local tissue reaction revealed good biocompatibility throughout the different degradation stages. After full degradation, complete remodeling to physiological tissue was observed at the implant locations. In addition, this study critically discusses common issues related to the assessment of biomaterial degradation kinetics in the context of medical device certification. This work highlighted the importance and encouraged the implementation of biologically relevant in vitro degradation models to replace animal studies or at least reduce the number of animals in preclinical testing prior to clinical studies. Moreover, the suitability of frequently used implantation studies based on ISO 10993-6 at standard locations was critically discussed, especially in light of the associated lack of reliable predictions for degradation kinetics at the clinically relevant site of implantation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.