Astrocytes are the major glial subtype in the brain and mediate numerous functions ranging from metabolic support to gliotransmitter release through signaling mechanisms controlled by Ca2+. Despite intense interest, the Ca2+ influx pathways in astrocytes remain obscure, hindering mechanistic insights into how Ca2+ signaling is coupled to downstream astrocyte-mediated effector functions. Here, we identified store-operated Ca2+ release-activated Ca2+ (CRAC) channels encoded by Orail and STIM1 as a major route of Ca2+ entry for driving sustained and oscillatory Ca2+ signals in astrocytes after stimulation of metabotropic purinergic and protease-activated receptors. Using synaptopHluorin as an optical reporter, we showed that the opening of astrocyte CRAC channels stimulated vesicular exocytosis to mediate the release of gliotransmitters, including ATP. Furthermore, slice electrophysiological recordings showed that activation of astrocytes by protease-activated receptors stimulated interneurons in the CA1 hippocampus to increase inhibitory postsynaptic currents on CA1 pyramidal cells. These results reveal a central role for CRAC channels as regulators of astrocyte Ca2+ signaling, gliotransmitter release, and astrocyte- mediated tonic inhibition of CA1 pyramidal neurons.
Temporal lobe epilepsy is a complex neurological disease caused by imbalance of excitation and inhibition in the brain. Growing literature implicates altered Ca 2+ signalling in many aspects of epilepsy but the diversity of Ca 2+ channels that regulate this syndrome are not well-understood. r Here, we report that mice lacking the store-operated Ca 2+ channel, Orai1, in the brain show markedly stronger seizures in response to the chemoconvulsants, kainic acid and pilocarpine. r Electrophysiological analysis reveals that selective deletion of Orai1 channels in inhibitory neurons disables chemoconvulsant-induced excitation of GABAergic neurons in the CA1 hippocampus. r Likewise, deletion of Orai1 in GABAergic neurons abrogates the chemoconvulsant-induced burst of spontaneous inhibitory postsynaptic currents (sIPSCs) on CA1 pyramidal neurons in the hippocampus. This loss of chemoconvulsant inhibition likely aggravates status epilepticus in Orai1 KO mice. r These results identify Orai1 channels as regulators of hippocampal interneuron excitability and seizures.
The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches.
Children with Developmental Language Disorder (DLD) show relative weaknesses on rhythm tasks beyond their characteristic linguistic impairments. The current study compares preferred tempo and the width of an entrainment region for 5- to 7-year-old typically developing children and children with DLD and considers the associations with rhythm aptitude and expressive grammar skills in the two populations. Preferred tempo was measured with a spontaneous motor tempo task (tapping tempo at a comfortable speed) and the width (range) of an entrainment region was measured by the difference between the upper (slow) and lower (fast) limits of tapping a rhythm normalized by an individual’s spontaneous motor tempo. Data from N = 16 children with DLD and N = 114 children with TD showed that whereas entrainment-region width did not differ across the two groups, slowest motor tempo, the determinant of the upper (slow) limit of the entrainment region, was at a faster tempo in children with DLD vs. TD. Entrainment-region width was positively associated with rhythm aptitude and receptive grammar even after taking into account potential confounding factors, whereas expressive grammar did not show an association with any of the tapping measures. Preferred tempo was not associated with any study variables after including covariates in the analyses. These results motivate future neuroscientific studies of low-frequency neural oscillatory mechanisms as the potential neural correlates of entrainment-region width and their associations with musical rhythm and spoken language processing in children with typical and atypical language development.
Octopamine is a well-established invertebrate neurotransmitter involved in fight or flight responses. In mammals, its function was replaced by epinephrine. Nevertheless, it is present at trace amounts and can modulate the release of monoamine neurotransmitters by a yet unidentified mechanism. Here, through a multidisciplinary approach utilizing in vitro and in vivo models of α-synucleinopathy, we uncovered an unprecedented role for octopamine in driving the conversion from toxic to neuroprotective astrocytes in the cerebral cortex by fostering aerobic glycolysis. Physiological levels of neuron-derived octopamine act on astrocytes via a trace amine-associated receptor 1–Orai1–Ca 2+ –calcineurin-mediated signaling pathway to stimulate lactate secretion. Lactate uptake in neurons via the monocarboxylase transporter 2–calcineurin-dependent pathway increases ATP and prevents neurodegeneration. Pathological increases of octopamine caused by α-synuclein halt lactate production in astrocytes and short-circuits the metabolic communication to neurons. Our work provides a unique function of octopamine as a modulator of astrocyte metabolism and subsequent neuroprotection with implications to α-synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.