ContextWalking speed is a fundamental parameter of human motion and is increasingly considered as an important indicator of individuals' health status.ObjectiveTo evaluate the relationship of gait parameters, and demographic and physical characteristics in healthy men and women.Design, Setting, and ParticipantsRecruitment of a subsample (n = 358) of male and female blood donors taking part in the Cambridge CardioResource study. Collection of demographic data, measurement of physical characteristics (height, weight and blood pressure) and assessment of 7-day, free-living activity parameters using accelerometry and a novel algorithm to measure walking speed. Participants were a median (interquartile range[IQR]) age of 49 (16) years; 45% women; and had a median (IQR) BMI of 26 (5.4).Main Outcome MeasureWalking speed.ResultsIn this study, the hypothesis that walking speed declines with age was generated using an initial ‘open’ dataset. This was subsequently validated in a separate ‘closed’ dataset that showed a decrease of walking speed of −0.0037 m/s per year. This is equivalent to a difference of 1.2 minutes, when walking a distance of 1 km aged 20 compared to 60 years. Associations between walking speed and other participant characteristics (i.e. gender, BMI and blood pressure) were non-significant. BMI was negatively correlated with the number of walking and running steps and longest non-stop distance.ConclusionThis is the first study using accelerometry which shows an association between walking speed and age in free-living, healthy individuals. Absolute values of gait speed are comparable to published normal ranges in clinical settings. This study highlights the potential use of mobile accelerometry to assess gait parameters which may be indicative of future health outcomes in healthy individuals.
Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt®) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure.
BackgroundEcological validity implicates in how far clinical assessments refer to real life. Short clinical gait tests up to ten meters and 2- or 6-Minutes Walking Tests (2MWT/6MWT) are used as performance-based outcomes in Multiple Sclerosis (MS) studies and considered as moderately associated with real life mobility.ObjectiveTo investigate the ecological validity of 10 Meter Walking Test (10mWT), 2MWT and 6MWT.MethodsPersons with MS performed 10mWT, 6MWT including 2MWT and 7 recorded days by accelerometry. Ecological validity was assumed if walking tests represented a typical walking sequence in real-life and correlations with accelerometry parameters were strong.ResultsIn this cohort (n=28, medians: age=45, EDSS=3.2, disease duration=9 years), uninterrupted walking of 2 or 6 minutes occurred not frequent in real life (2.61 and 0.35 sequences/day). 10mWT correlated only with slow walking speed quantiles in real life. 2MWT and 6MWT correlated moderately with most real life walking parameters.ConclusionClinical gait tests over a few meters have a poor ecological validity while validity is moderate for 2MWT and 6MWT. Mobile accelerometry offers the opportunity to control and improve the ecological validity of MS mobility outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.