Clinical surrogates of unremitting disability used in trials of relapsing-remitting multiple sclerosis cannot be validated. Trials have been too short or degrees of disability change too small to measure the key outcomes. These analyses highlight the difficulty in determining effectiveness of therapy in chronic diseases.
ContextWalking speed is a fundamental parameter of human motion and is increasingly considered as an important indicator of individuals' health status.ObjectiveTo evaluate the relationship of gait parameters, and demographic and physical characteristics in healthy men and women.Design, Setting, and ParticipantsRecruitment of a subsample (n = 358) of male and female blood donors taking part in the Cambridge CardioResource study. Collection of demographic data, measurement of physical characteristics (height, weight and blood pressure) and assessment of 7-day, free-living activity parameters using accelerometry and a novel algorithm to measure walking speed. Participants were a median (interquartile range[IQR]) age of 49 (16) years; 45% women; and had a median (IQR) BMI of 26 (5.4).Main Outcome MeasureWalking speed.ResultsIn this study, the hypothesis that walking speed declines with age was generated using an initial ‘open’ dataset. This was subsequently validated in a separate ‘closed’ dataset that showed a decrease of walking speed of −0.0037 m/s per year. This is equivalent to a difference of 1.2 minutes, when walking a distance of 1 km aged 20 compared to 60 years. Associations between walking speed and other participant characteristics (i.e. gender, BMI and blood pressure) were non-significant. BMI was negatively correlated with the number of walking and running steps and longest non-stop distance.ConclusionThis is the first study using accelerometry which shows an association between walking speed and age in free-living, healthy individuals. Absolute values of gait speed are comparable to published normal ranges in clinical settings. This study highlights the potential use of mobile accelerometry to assess gait parameters which may be indicative of future health outcomes in healthy individuals.
Age strongly influences the phenotype before progression. Relapsing-remitting patients younger at onset are more likely to display a predominantly inflammatory course, yet relapses number does not affect the age at onset of progression.
Aim. There is no consensus about the normal fetal heart rate. Current international guidelines recommend for the normal fetal heart rate (FHR) baseline different ranges of 110 to 150 beats per minute (bpm) or 110 to 160 bpm. We started with a precise definition of “normality” and performed a retrospective computerized analysis of electronically recorded FHR tracings.Methods. We analyzed all recorded cardiotocography tracings of singleton pregnancies in three German medical centers from 2000 to 2007 and identified 78,852 tracings of sufficient quality. For each tracing, the baseline FHR was extracted by eliminating accelerations/decelerations and averaging based on the “delayed moving windows” algorithm. After analyzing 40% of the dataset as “training set” from one hospital generating a hypothetical normal baseline range, evaluation of external validity on the other 60% of the data was performed using data from later years in the same hospital and externally using data from the two other hospitals.Results. Based on the training data set, the “best” FHR range was 115 or 120 to 160 bpm. Validation in all three data sets identified 120 to 160 bpm as the correct symmetric “normal range”. FHR decreases slightly during gestation.Conclusions. Normal ranges for FHR are 120 to 160 bpm. Many international guidelines define ranges of 110 to 160 bpm which seem to be safe in daily practice. However, further studies should confirm that such asymmetric alarm limits are safe, with a particular focus on the lower bound, and should give insights about how to show and further improve the usefulness of the widely used practice of CTG monitoring.
Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt®) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.