Internet of things (IoT) infrastructure, fast access to knowledge becomes critical. In some application domains, such as robotics, autonomous driving, predictive maintenance, and anomaly detection, the response time of the system is more critical to ensure Quality of Service than the quality of the answer. In this paper, we propose a methodology, a set of predefined steps to be taken in order to map the models to hardware, especially field programmable gate arrays (FPGAs), with the main focus on latency reduction. Multi-objective covariance matrix adaptation evolution strategy (MO-CMA-ES) was employed along with custom scores for sparsity, bit-width of the representation and quality of the model. Furthermore, we created a framework which enables mapping of neural models to FPGAs. The proposed solution is validated using three case studies and Xilinx Zynq UltraScale+ MPSoC 285 XCZU15EG as a platform. The results show a compression ratio for quantization and pruning in different scenarios with and without retraining procedures. Using our publicly available framework, we achieved 210 ns of latency for a single processing step for a model composed of two long short-term memory (LSTM) and a single dense layer.
Convolutional neural networks are modern models that are very efficient in many classification tasks. They were originally created for image processing purposes. Then some trials were performed to use them in different domains like natural language processing. The artificial intelligence systems (like humanoid robots) are very often based on embedded systems with constraints on memory, power consumption etc. Therefore convolutional neural network because of its memory capacity should be reduced to be mapped to given hardware. In this paper, results are presented of compressing the efficient convolutional neural networks for sentiment analysis. The main steps are quantization and pruning processes. The method responsible for mapping compressed network to FPGA and results of this implementation are presented. The described simulations showed that 5-bit width is enough to have no drop in accuracy from floating point version of the network. Additionally, significant memory footprint reduction was achieved (from 85% up to 93%).
The main goal of this work was to implement a reliable machine learning algorithm that can classify a dog's age given only a photograph of its face. The problem, which seems simple for humans, presents itself as very difficult for the machine learning algorithms due to differences in facial features among the dog population. As convolutional neural networks (CNNs) performed poorly in this problem, the authors took another approach of creating novel architecture consisting of a combination of CNN and vision transformer (ViT) and examining the age of the dogs separately for every breed. Authors achieved better results than those in initial works covering the problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.