The human cis-prenyltransferase (hcis-PT) is an enzymatic complex essential for protein N-glycosylation. Synthesizing the precursor of the glycosyl carrier dolichol-phosphate, mutations in hcis-PT cause severe human diseases. Here, we reveal that hcis-PT exhibits a heterotetrameric assembly in solution, consisting of two catalytic dehydrodolichyl diphosphate synthase (DHDDS) and inactive Nogo-B receptor (NgBR) heterodimers. Importantly, the 2.3 Å crystal structure reveals that the tetramer assembles via the DHDDS C-termini as a dimer-of-heterodimers. Moreover, the distal C-terminus of NgBR transverses across the interface with DHDDS, directly participating in active-site formation and the functional coupling between the subunits. Finally, we explored the functional consequences of disease mutations clustered around the active-site, and in combination with molecular dynamics simulations, we propose a mechanism for hcis-PT dysfunction in retinitis pigmentosa. Together, our structure of the hcis-PT complex unveils the dolichol synthesis mechanism and its perturbation in disease.
Isoprenoids are synthesized by the prenyltransferase superfamily, which is subdivided according to the product stereoisomerism and length. In short- and medium-chain isoprenoids, product length correlates with active site volume. However, enzymes synthesizing long-chain products and rubber synthases fail to conform to this paradigm, because of an unexpectedly small active site. Here, we focused on the human cis -prenyltransferase complex (h cis -PT), residing at the endoplasmic reticulum membrane and playing a crucial role in protein glycosylation. Crystallographic investigation of h cis -PT along the reaction cycle revealed an outlet for the elongating product. Hydrogen-deuterium exchange mass spectrometry analysis showed that the hydrophobic active site core is flanked by dynamic regions consistent with separate inlet and outlet orifices. Last, using a fluorescence substrate analog, we show that product elongation and membrane association are closely correlated. Together, our results support direct membrane insertion of the elongating isoprenoid during catalysis, uncoupling active site volume from product length.
Dehydrodolichyl diphosphate synthase (DHDDS) is the catalytic subunit of the heteromeric human cis-prenyltransferase complex, synthesizing the glycosyl carrier precursor for N-linked protein glycosylation. Consistent with the important role of N-glycosylation in protein biogenesis, DHDDS mutations result in human diseases. Importantly, DHDDS encompasses a C-terminal region, which does not converge with any known conserved domains. Therefore, despite the clinical importance of DHDDS, our understating of its structure–function relations remains poor. Here, we provide a structural model for the full-length human DHDDS using a multidisciplinary experimental and computational approach. Size-exclusion chromatography multi-angle light scattering revealed that DHDDS forms a monodisperse homodimer in solution. Enzyme kinetics assays revealed that it exhibits catalytic activity, although reduced compared to that reported for the intact heteromeric complex. Our model suggests that the DHDDS C-terminus forms a helix–turn–helix motif, tightly packed against the core catalytic domain. This model is consistent with small-angle X-ray scattering data, indicating that the full-length DHDDS maintains a similar conformation in solution. Moreover, hydrogen–deuterium exchange mass-spectrometry experiments show time-dependent deuterium uptake in the C-terminal domain, consistent with its overall folded state. Finally, we provide a model for the DHDDS–NgBR heterodimer, offering a structural framework for future structural and functional studies of the complex.
Isoprenoids are the largest group of natural products, found in all living organisms and play an essential role in numerous cellular processes. These compounds are synthesized by prenyltransferases, catalyzing the condensation reaction between an allylic diphosphate primer and a variable number of isopentenyl diphosphate (C5) units. This superfamily of enzymes can be subdivided into trans- or cis-prenyltransferases according to the stereoisomerism of the product. The cis branch can be further classified according to product length. While the active site volume was suggested to determine the final length in enzymes synthesizing short- and medium-chain products (up to C60), long-chain enzymes (up to C120) and rubber synthases (>C10,000) fail to conform to this paradigm. Here, to resolve the structural basis for long-chain isoprenoid synthesis, we focused on the human cis-prenyltransferase complex (hcis-PT). This enzyme, peripheral to the endoplasmic reticulum membrane, produces the precursor for dolichol phosphate, a membrane residing glycosyl carrier. In line with its crucial role in the cellular protein glycosylation machinery, disease-causing mutations in hcis-PT were shown to result in a wide spectrum of clinical phenotypes. The crystallographic structures of hcis-PT in four different substrate/product-bound conformations revealed an outlet enabling product elongation into the bulk solvent. Moreover, hydrogen-deuterium exchange mass spectrometry analysis in solution showed that the hydrophobic active site core is flanked by dynamic regions consistent with separate inlet and outlet orifices. Finally, using a fluorescent substrate analog and a fluorescently-labeled lipid nanodiscs, we show that product elongation and membrane association are closely correlated. Together, our results support directional product synthesis in long-chain enzymes and rubber synthases, with a distinct substrate inlet and product outlet, allowing direct membrane insertion of the elongating isoprenoid during catalysis. This mechanism uncouples active site volume from product length and circumvents the need to expulse hydrophobic product into a polar environment prior to membrane insertion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.