Changes in well‐delimited Collembola communities along a steep microclimatic gradient at the entrance of Silická ľadnica Ice Cave, Slovakia, were investigated after 10 years (2007, 2017). We focused on the occurrence of psychrophilic and endemic species occupying this unique karst collapse doline and their response to climatic singularities in the given years as well as the increasing trend in regional air temperature. The soil temperature means at sites across the doline slope corresponded with climatic trends in the periods 2006–2007 and 2016–2017. Significantly lower average soil temperatures but significantly higher mean abundances, species richness, and diversity indices of the collembolan communities were recorded at sites during the second study period, which was characterized by more favorable soil microclimatic conditions (temperature and moisture content) compared to the first period. The dominance structure and community composition of the studied assemblages appeared to be relatively constant after 10 years, indicating stable collembolan communities, especially at cold sites at the bottom of the doline. Redundancy ordination analysis documented a clear delimitation of the communities in relation to the soil temperature, pH, and C:N ratio in both periods. Long‐term (30‐year) regional climatic data showed an increasing trend of annual air temperature means and precipitation. However, an increase in the number and abundance of xerothermophilous species and a decline in psychrophilic species (mostly endemic) along the gradient as a potential response of the increasing regional temperature were not observed, suggesting the high resilience of these communities. Microclimate and habitat heterogeneity are probably major drivers of soil Collembola communities along the steep microclimatic gradient of a karst collapse doline, which was observed by the repeated sampling after 10 years. Karst dolines as potentially important local sources of ɑ‐diversity will likely become increasingly indispensable refugia for local biodiversity under ongoing global warming, thus deserving reliable conservation.
Karst dolines, as geomorphologically diverse natural landforms, usually exhibit more or less steep microclimatic gradients that provide a mosaic of diverse microhabitat conditions, resulting in a high diversity of soil biota with numerous rare endemic and/or relict species occupying these habitats. In this study, we investigated the spatial patterns of Collembola abundance, species richness, community structure and distribution of functional groups at topographically and microclimatically different sites across three open (unforested) karst dolines in a north-south direction in the Slovak Karst, Slovakia. We also assessed the refugial capacity of dolines for collembolan communities. The Friedman ANOVA test confirmed the significant differences in soil mean temperatures between the sites of all the dolines selected. The diverse soil microclimatic conditions within the dolines supported higher Collembola diversity (species numbers, diversity indices) compared with sites on the karst plateau and showed a potential to facilitate the persistence of some species that are absent or very rare in the surrounding landscape. In dolines with circular morphology and comparable size, the topography and soil microclimate had a stronger effect on community composition and structure than soil organic carbon. Shallow solution dolines provided microhabitats for various functional groups of soil Collembola in relation to the microclimatic character of the individual sites. It was observed that such landforms can also function as microclimatic refugia for cold-adapted species through the accumulation of colder air and the buffering of the local microclimate against the ambient mesoclimate, thus underlying the necessity of adequate attention in terms of the conservation of the karst natural phenomena.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.