For stability, many catalytic RNAs rely on long-range tertiary interactions, the precise role of each often being unclear. Here we demonstrate that one of the three interdomain architectural struts of RNase P RNA (P RNA) is the key to activity at higher temperatures: disrupting the P1-L9 helix-tetraloop interaction in P RNA of the thermophile Thermus thermophilus decreased activity at high temperatures in the RNA-alone reaction and at low Mg 2+ concentrations in the holoenzyme reaction. Conversely, implanting the P1-P9 module of T. thermophilus in the P RNA from the mesophile Escherichia coli converted the latter RNA into a thermostable one. Moreover, replacing the E. coli P1-P9 elements with a pseudoknot module that mediates the homologous interaction in Mycoplasma P RNAs not only conferred thermostability upon E. coli P RNA but also increased its maximum turnover rate at 55°C to the highest yet described for a P RNA ribozyme.
The RNase P RNA (rnpB) and protein (rnpA) genes were identified in the two Aquificales Sulfurihydrogenibium azorense and Persephonella marina. In contrast, neither of the two genes has been found in the sequenced genome of their close relative, Aquifex aeolicus. As in most bacteria, the rnpA genes of S. azorense and P. marina are preceded by the rpmH gene coding for ribosomal protein L34. This genetic region, including several genes up-and downstream of rpmH, is uniquely conserved among all three Aquificales strains, except that rnpA is missing in A. aeolicus. The RNase P RNAs (P RNAs) of S. azorense and P. marina are active catalysts that can be activated by heterologous bacterial P proteins at low salt. Although the two P RNAs lack helix P18 and thus one of the three major interdomain tertiary contacts, they are more thermostable than Escherichia coli P RNA and require higher temperatures for proper folding. Related to their thermostability, both RNAs include a subset of structural idiosyncrasies in their S domains, which were recently demonstrated to determine the folding properties of the thermostable S domain of Thermus thermophilus P RNA. Unlike 16S rRNA phylogeny that has placed the Aquificales as the deepest lineage of the bacterial phylogenetic tree, RNase P RNA-based phylogeny groups S. azorense and P. marina with the green sulfur, cyanobacterial, and d/e proteobacterial branches.
5'-End maturation of tRNA primary transcripts is thought to be ubiquitously catalyzed by ribonuclease P (RNase P), a ribonucleoprotein enzyme in the vast majority of organisms and organelles. In the hyperthermophilic bacterium Aquifex aeolicus, neither a gene for the RNA nor the protein component of bacterial RNase P has been identified in its sequenced genome. Here, we demonstrate the presence of an RNase P-like activity in cell lysates of A. aeolicus. Detection of activity was sensitive to the buffer conditions during cell lysis and partial purification, explaining why we failed to observe activity in the buffer system applied previously. RNase P-like activity of A. aeolicus depends on the presence of Mg2+ or Mn2+, persists at high temperatures, which inactivate RNase P enzymes from mesophilic bacteria, and is remarkably resistant to micrococcal nuclease treatment. While cellular RNA fractions from other Aquificales (A. pyrophilus, Hydrogenobacter thermophilus and Thermocrinis ruber) could be stimulated by bacterial RNase P proteins to catalyze tRNA 5'-end maturation, no such stimulation was observed with RNA from A. aeolicus. In conclusion, our results point to the possibility that RNase P-like activity in A. aeolicus is devoid of an RNA subunit or may include an RNA subunit with untypical features.
In most bacterial type A RNase P RNAs (P RNAs), two major loop-helix tertiary contacts (L8-P4 and L18-P8) help to orient the two independently folding S-and C-domains for concerted recognition of precursor tRNA substrates. Here, we analyze the effects of mutations in these tertiary contacts in P RNAs from three different species: (i) the psychrophilic bacterium Pseudoalteromonas translucida (Ptr), (ii) the mesophilic radiation-resistant bacterium Deinococcus radiodurans (Dra), and (iii) the thermophilic bacterium Thermus thermophilus (Tth). We show by UV melting experiments that simultaneous disruption of these two interdomain contacts has a stabilizing effect on all three P RNAs. This can be inferred from reduced RNA unfolding at lower temperatures and a more concerted unfolding at higher temperatures. Thus, when the two domains tightly interact via the tertiary contacts, one domain facilitates structural transitions in the other. P RNA mutants with disrupted interdomain contacts showed severe kinetic defects that were most pronounced upon simultaneous disruption of the L8-P4 and L18-P8 contacts. At 37°C, the mildest effects were observed for the thermostable Tth RNA. A third interdomain contact, L9-P1, makes only a minor contribution to P RNA tertiary folding. Furthermore, D. radiodurans RNase P RNA forms an additional pseudoknot structure between the P9 and P12 of its S-domain. This interaction was found to be particularly crucial for RNase P holoenzyme activity at near-physiological Mg 2+ concentrations (2 mM). We further analyzed an exceptionally stable folding trap of the G,C-rich Tth P RNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.