BackgroundRhinorhipidae Lawrence, 1988 is an enigmatic beetle family represented by a single species, Rhinorhipus tamborinensis Lawrence, 1988, from Australia, with poorly established affinities near the superfamily Elateroidea (click beetles, soldier beetles and fireflies) or the more inclusive series (infraorder) Elateriformia. Its evolutionary position may inform the basal relationships of the suborder Polyphaga, the largest clade of Coleoptera.ResultsWe analyzed four densely sampled DNA datasets of major coleopteran lineages for mitogenomes, rRNA genes and single copy nuclear genes. Additionally, genome sequencing was used for incorporation of R. tamborinensis into a set of 4220 orthologs for 24 terminals representing 12 polyphagan superfamilies. Topologies differed to various degrees, but all consistently refute the proposed placement of Rhinorhipidae in Elateroidea and instead indicate either sister relationships with other Elateriformia, frequently together with Nosodendridae, another divergent small family hitherto placed in Derodontoidea, or in an isolated position among the deepest lineages of Polyphaga. The phylogenomic analyses recovered Rhinorhipus in a sister position to all other Elateriformia composed of five superfamilies. Therefore, we erect the new superfamily Rhinorhipoidea Lawrence, 1988, stat. Nov., with the type-family Rhinorhipidae. The origins of the Rhinorhipidae were dated to the Upper Triassic/Lower Jurassic at the very early phase of polyphagan diversification.ConclusionsThus, Rhinorhipidae adds another example to several recently recognized ancient relict lineages which are interspersed within contemporaneous hugely species-rich lineages of Coleoptera.Electronic supplementary materialThe online version of this article (10.1186/s12983-018-0262-0) contains supplementary material, which is available to authorized users.
We synthesize the evidence from molecular phylogenetics, extant distribution, and plate tectonics to present an insight in ancestral areas, dispersal routes and the effectiveness of geographic barriers for net-winged beetle tribes (Coleoptera: Lycidae). Samples from all zoogeographical realms were assembled and phylogenetic relationships for ~550 species and 25 tribes were inferred using nuclear rRNA and mtDNA markers. The analyses revealed well-supported clades at the rank of tribes as they have been defined using morphology, but a low support for relationships among them. Most tribes started their diversification in Southeast and East Asia or are endemic to this region. Slipinskiini and Dexorini are Afrotropical endemics and Calopterini, Eurrhacini, Thonalmini, and Leptolycini remained isolated in South America and the Caribbean after their separation from northern continents. Lycini, Calochromini, and Erotini support relationships between the Nearctic and eastern Palearctic faunas; Calochromini colonized the Afrotropical realm from East Asia and Metriorrhynchini Afrotropical and Oriental realms from the drifting Indian subcontinent. Most tribes occur in the Oriental and Sino-Japanese realms, the highest alpha-taxonomic diversity was identified in Malesian tropical rainforests. The turn-over at zoogeographical boundaries is discussed when only short distance over-sea colonization events were inferred. The lycid phylogeny shows that poor dispersers can be used for reconstruction of dispersal and vicariance history over a long time-span, but the current data are insufficient for reconstruction of the early phase of their diversification.
Net‐winged beetles (Coleoptera: Lycidae) are a diverse group of elateroids known for aposematism and neoteny. Phylogenetic analyses of morphological and molecular data have revealed different results with respect to within‐group relationships. In this study, we recovered a highly supported phylogenomic phylogeny and identified seven subfamilies: Dexorinae stat.n., Calochrominae stat.n., Erotinae, Ateliinae, Lycinae, Lyropaeinae stat.n. and Metriorrhynchinae stat.n. Our results suggest that female neoteny evolved multiple times. Therefore, the development of similar morphological modifications in neotenics may be linked and may have produced characteristics such as body miniaturization, structural simplification, i.e. reduction of mouthparts, fewer antennomeres and palpomeres, uniquely shaped terminal palpomeres, shortened elytra, the loss of coadaptation between the elytra and pronotum, and others. Additional traits evolved in parallel due to similarities in biology, function and sexual selection. These characteristics include mimetic similarities, the presence of the rostrum, pronotal carinae and elytral costae, and the structure of male genitalia. By comparing the phylogenomic topology with the evolution of morphological characters, we were able to identify evolutionary trends in lycids and compare them with analogues for other neotenic elateroids. These traits have not been accepted as homoplasies due to the ambiguous phylogenetic signal from Sanger sequencing markers.
The neotenic Platerodrilus net-winged beetles have strongly modified development where females do not pupate and retain larval morphology when sexually mature. As a result, dispersal propensity of females is extremely low and the lineage can be used for reconstruction of ancient dispersal and vicariance patterns and identification of centres of diversity. We identified three deep lineages in Platerodrilus occurring predominantly in (1) Borneo and the Philippines, (2) continental Asia, and (3) Sumatra, the Malay Peninsula and Java. We document limited ranges of all species of Platerodrilus and complete species level turnover between the Sunda Islands and even between individual mountain regions in Sumatra. Few dispersal events were recovered among the major geographical regions despite long evolutionary history of occurrence; all of them were dated at the early phase of Platerodrilus diversification up to the end of Miocene and no exchange of island faunas was identified during the Pliocene and Pleistocene despite the frequently exposed Sunda Shelf as sea levels fluctuated with each glacial cycle. We observed high diversity in the regions with persisting humid tropical forests during cool periods. The origins of multiple species were inferred in Sumatra soon after the island emerged and the mountain range uplifted 15 million years ago with the speciation rate lower since then. We suppose that the extremely low dispersal propensity makes Platerodrilus a valuable indicator of uninterrupted persistence of rainforests over a long time span. Additionally, if the diversity of these neotenic lineages is to be protected, a high dense system of protected areas would be necessary.
Biologists have reported on the chemical defences and the phenetic similarity of net-winged beetles (Coleoptera: Lycidae) and their co-mimics. Nevertheless, our knowledge has remained fragmental, and the evolution of mimetic patterns has not been studied in the phylogenetic context. We illustrate the general appearance of ~ 600 lycid species and ~ 200 co-mimics and their distribution. Further, we assemble the phylogeny using the transcriptomic backbone and ~ 570 species. Using phylogenetic information, we closely scrutinise the relationships among aposematically coloured species, the worldwide diversity, and the distribution of aposematic patterns. The emitted visual signals differ in conspicuousness. The uniform coloured dorsum is ancestral and was followed by the evolution of bicoloured forms. The mottled patterns, i.e. fasciate, striate, punctate, and reticulate, originated later in the course of evolution. The highest number of sympatrically occurring patterns was recovered in New Guinea and the Andean mountain ecosystems (the areas of the highest abundance), and in continental South East Asia (an area of moderate abundance but high in phylogenetic diversity). Consequently, a large number of co-existing aposematic patterns in a single region and/or locality is the rule, in contrast with the theoretical prediction, and predators do not face a simple model-like choice but cope with complex mimetic communities. Lycids display an ancestral aposematic signal even though they sympatrically occur with differently coloured unprofitable relatives. We show that the highly conspicuous patterns evolve within communities predominantly formed by less conspicuous Müllerian mimics and, and often only a single species displays a novel pattern. Our work is a forerunner to the detailed research into the aposematic signalling of net-winged beetles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.