We present a new release of the Czech-English parallel corpus CzEng. CzEng 1.6 consists of about 0.5 billion words ("gigaword") in each language. The corpus is equipped with automatic annotation at a deep syntactic level of representation and alternatively in Universal Dependencies. Additionally, we release the complete annotation pipeline as a virtual machine in the Docker virtualization toolkit.
Objective. We investigate machine translation (MT) of user search queries in the context of cross-lingual information retrieval (IR) in the medical domain. The main focus is on techniques to adapt MT to increase translation quality; however, we also explore MT adaptation to improve effectiveness of cross-lingual IR.Methods and Data. Our MT system is Moses, a state-of-the-art phrase-based statistical machine translation system. The IR system is based on the BM25 retrieval model implemented in the Lucene search engine. The MT techniques employed in this work include in-domain training and tuning, intelligent training data selection, optimization of phrase table configuration, compound splitting, and exploiting synonyms as translation variants. The IR methods include morphological normalization and using multiple translation variants for query expansion. The experiments are performed and thoroughly evaluated on three language pairs: Czech-English, German-English, and French-English. MT quality is evaluated on data sets created within the Khresmoi project and IR effectiveness is tested on the CLEF eHealth 2013 data sets.Results. The search query translation results achieved in our experiments are outstanding -our systems outperform not only our strong baselines, but also Google Translate and Microsoft Bing Translator in direct comparison carried out on all the language pairs. The baseline BLEU scores increased from 26.59 to 41.45 for Czech-English, from 23.03 to 40.82 for German-English, and from 32.67 to 40.82 for French-English. This is a 55% improvement on average. In terms of the IR performance on this particular test collection, a significant improvement over the baseline is achieved only for French-English. For Czech-English and German-English, the increased MT quality does not lead to better IR results.Conclusions. Most of the MT techniques employed in our experiments improve MT of medical search queries. Especially the intelligent training data selection proves to be very successful for domain adaptation of MT. Certain improvements are also obtained from German compound splitting on the source language side. Translation quality, however, does not appear to correlate with the IR performance -better translation does not necessarily yield better retrieval. We discuss in detail the contribution of the individual techniques and state-of-the-art features and provide future research directions.
The paper describes the system for coreference resolution in German and Russian, trained exclusively on coreference relations projected through a parallel corpus from English. The resolver operates on the level of deep syntax and makes use of multiple specialized models. It achieves 32 and 22 points in terms of CoNLL score for Russian and German, respectively. Analysis of the evaluation results show that the resolver for Russian is able to preserve 66% of the English resolver's quality in terms of CoNLL score. The system was submitted to the Closed track of the COR-BON 2017 Shared task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.