We present a theoretical view of the cellular foundations for network-level processes involved in producing our conscious experience. Inputs to apical synapses in layer 1 of a large subset of neocortical cells are summed at an integration zone near the top of their apical trunk. These inputs come from diverse sources and provide a context within which the transmission of information abstracted from sensory input to their basal and perisomatic synapses can be amplified when relevant. We argue that apical amplification enables conscious perceptual experience and makes it more flexible, and thus more adaptive, by being sensitive to context. Apical amplification provides a possible mechanism for recurrent processing theory that avoids strong loops. It makes the broadcasting hypothesized by global neuronal workspace theories feasible while preserving the distinct contributions of the individual cells receiving the broadcast. It also provides mechanisms that contribute to the holistic aspects of integrated information theory. As apical amplification is highly dependent on cholinergic, aminergic, and other neuromodulators, it relates the specific contents of conscious experience to global mental states and to fluctuations in arousal when awake. We conclude that apical dendrites provide a cellular mechanism for the context-sensitive selective amplification that is a cardinal prerequisite of conscious perception.
Plant phenotyping platforms offer automated, fast scoring of traits that simplify the selection of varieties that are more competitive under stress conditions. However, indoor phenotyping methods are frequently based on the analysis of plant growth in individual pots. We present a reproducible indoor phenotyping method for screening young barley populations under water stress conditions and after subsequent rewatering. The method is based on a simple read-out of data using RGB imaging, projected canopy height, as a useful feature for indirectly following the kinetics of growth and water loss in a population of barley. A total of 47 variables including 15 traits and 32 biochemical metabolites measured (morphometric parameters, chlorophyll fluorescence imaging, quantification of stress-related metabolites; amino acids and polyamines, and enzymatic activities) were used to validate the method. The study allowed the identification of metabolites related to water stress response and recovery. Specifically, we found that cadaverine (Cad), 1,3-aminopropane (DAP), tryptamine (Tryp), and tyramine (Tyra) were the major contributors to the water stress response, whereas Cad, DAP, and Tyra, but not Tryp, remained at higher levels in the stressed plants even after rewatering. In this work, we designed, optimized and validated a non-invasive image-based method for automated screening of potential water stress tolerance genotypes in barley populations. We demonstrated the applicability of the method using transgenic barley lines with different sensitivity to drought stress showing that combining canopy height and the metabolite profile we can discriminate tolerant from sensitive genotypes. We showed that the projected canopy height a sensitive trait that truly reflects other invasively studied morphological, physiological, and metabolic traits and that our presented methodological setup can be easily applicable for large-scale screenings in low-cost systems equipped with a simple RGB camera. We believe that our approach will contribute to accelerate the study and understanding of the plant water stress response and recovery capacity in crops, such as barley.
One of the greatest challenges of consciousness research is to understand the relationship between consciousness and its implementing substrate. Current research into the neural correlates of consciousness regards the biological brain as being this substrate, but largely fails to clarify the nature of the brain-consciousness connection. A popular approach within this research is to construe brain-consciousness correlations in causal terms: the neural correlates of consciousness are the causes of states of consciousness. After introducing the notion of the neural correlate of consciousness, we argue (see Against Causal Accounts of NCCs) that this causal strategy is misguided. It implicitly involves an undesirable dualism of matter and mind and should thus be avoided. A non-causal account of the brain-mind correlations is to be preferred. We favor the theory of the identity of mind and brain, according to which states of phenomenal consciousness are identical with their neural correlates. Research into the neural correlates of consciousness and the theory of identity (in the philosophy of mind) are two major research paradigms that hitherto have had very little mutual contact. We aim to demonstrate that they can enrich each other. This is the task of the third part of the paper in which we show that the identity theory must work with a suitably defined concept of type. Surprisingly, neither philosophers nor neuroscientists have taken much care in defining this central concept; more often than not, the term is used only implicitly and vaguely. We attempt to open a debate on this subject and remedy this unhappy state of affairs, proposing a tentative hierarchical classification of phenomenal and neurophysiological types, spanning multiple levels of varying degrees of generality. The fourth part of the paper compares the theory of identity with other prominent conceptions of the mind-body connection. We conclude by stressing that scientists working on consciousness should engage more with metaphysical issues concerning the relation of brain processes and states of consciousness. Without this, the ultimate goals of consciousness research can hardly be fulfilled.
There is almost unanimous consensus among the theorists of consciousness that the phenomenal character of a mental state cannot exist without consciousness. We argue for a reappraisal of this consensus. We distinguish two models of phenomenal consciousness: unitary and dual. Unitary model takes the production of a phenomenal quality and it's becoming conscious to be one and the same thing. The dual model, which we advocate in this paper, distinguishes the process in which the phenomenal quality is formed from the process that makes this quality conscious. We put forward a conceptual, methodological, neuropsychological and neural argument for the dual model. These arguments are independent but provide mutual support to each other. Together, they strongly support the dual model of phenomenal consciousness and the concomitant idea of unconscious mental qualities. The dual view is thus, we submit, a hypothesis worthy of further probing and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.