Cellulose-degrading enzyme systems are of significant interest from both a scientific and technological perspective due to the diversity of cellulase families, their unique assembly and substrate binding mechanisms, and their potential applications in several key industrial sectors, notably cellulose hydrolysis for second-generation biofuel production. Particularly fascinating are cellulosomes, the multimodular extracellular complexes produced by numerous anaerobic bacteria. Using single-molecule force spectroscopy, we analyzed the mechanical stability of the intermolecular interfaces between the cohesin and the dockerin modules responsible for selfassembly of the cellulosomal components into the multienzyme complex. The observed cohesin-dockerin rupture forces (>120 pN) are among the highest reported for a receptor-ligand system to date. Using an atomic force microscope protocol that quantified single-molecule binding activity, we observed force-induced dissociation of calcium ions from the duplicated loop-helix F-hand motif located within the dockerin module, which in the presence of EDTA resulted in loss of affinity to the cohesin partner. A cohesin amino acid mutation (D39A) that eliminated hydrogen bonding with the dockerin's critically conserved serine residues reduced the observed rupture forces. Consequently, no calcium loss occurred and dockerin activity was maintained throughout multiple forced dissociation events. These results offer insights at the single-molecule level into the stability and folding of an exquisite class of high-affinity protein-protein interactions that dictate fabrication and architecture of cellulose-degrading molecular machines. molecular recognition | protein unfolding
Protein-protein interactions play a vital role in cellular processes as exemplified by assembly of the intricate multi-enzyme cellulosome complex. Cellulosomes are assembled by selective high-affinity binding of enzyme-borne dockerin modules to repeated cohesin modules of structural proteins termed scaffoldins. Recent sequencing of the fiber-degrading Ruminococcus flavefaciens FD-1 genome revealed a particularly elaborate cellulosome system. In total, 223 dockerin-bearing ORFs potentially involved in cellulosome assembly and a variety of multi-modular scaffoldins were identified, and the dockerins were classified into six major groups. Here, extensive screening employing three complementary medium- to high-throughput platforms was used to characterize the different cohesin-dockerin specificities. The platforms included (i) cellulose-coated microarray assay, (ii) enzyme-linked immunosorbent assay (ELISA) and (iii) in-vivo co-expression and screening in Escherichia coli. The data revealed a collection of unique cohesin-dockerin interactions and support the functional relevance of dockerin classification into groups. In contrast to observations reported previously, a dual-binding mode is involved in cellulosome cell-surface attachment, whereas single-binding interactions operate for cellulosome integration of enzymes. This sui generis cellulosome model enhances our understanding of the mechanisms governing the remarkable ability of R. flavefaciens to degrade carbohydrates in the bovine rumen and provides a basis for constructing efficient nano-machines applied to biological processes.
The cellulosome is a large extracellular multi-enzyme complex that facilitates the efficient hydrolysis and degradation of crystalline cellulosic substrates. During the course of our studies on the cellulosome of the rumen bacterium Ruminococcus flavefaciens, we focused on the critical ScaA dockerin (ScaADoc), the unique dockerin that incorporates the primary enzyme-integrating ScaA scaffoldin into the cohesin-bearing ScaB adaptor scaffoldin. In the absence of a high-resolution structure of the ScaADoc module, we generated a computational model, and, upon its analysis, we were surprised to discover a putative stacking interaction between an N-terminal Trp and a C-terminal Pro, which we termed intramolecular clasp. In order to verify the existence of such an interaction, these residues were mutated to alanine. Circular dichroism spectroscopy, intrinsic tryptophan and ANS fluorescence, and NMR spectroscopy indicated that mutation of these residues has a destabilizing effect on the functional integrity of the Ca2+-bound form of ScaADoc. Analysis of recently determined dockerin structures from other species revealed the presence of other well-defined intramolecular clasps, which consist of different types of interactions between selected residues at the dockerin termini. We propose that this thematic interaction may represent a major distinctive structural feature of the dockerin module.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.