Background In spite of the fact that recombinant enzymes are preferably biotechnologically obtained using recombinant clones, the purification of proteins from native microorganisms, including those encoded by bacteriophages, continues. The native bacteriophage protein isolation is often troubled by large volumes of the infected bacterial cell lysates needed to be processed, which is highly undesired in scaled-up industrial processing. A well-known ammonium sulphate fractionation is often a method of choice during purification of the native bacteriophage protein. However, this method is time-consuming and cumbersome, and requires large amounts of the relatively expensive reagent. Thus, other effective and inexpensive methods of reversible protein precipitation are highly desirable. We have previously characterized thermophilic TP-84 bacteriophage, defined a new genus TP84virus within Siphoviridae family, conducted the TP-84 genome annotation and proteomic analysis. The longest Open Reading Frame (ORF) identified in the genome is TP84_26. We have previously annotated this ORF as a hydrolytic enzyme depolymerizing the thick polysaccharides host’s capsule. Results The TP84_26 ‘capsule depolymerase’ (depolymerase) is a large, 112 kDa protein, biosynthesized by the infected Geobacillus stearothermophilus 10 (G. stearothermophilus 10) cells. The TP84_26 protein biosynthesis was confirmed by three approaches: (i) purification of the protein of the expected size; (ii) mass spectrometry (LC–MS) analysis and (iii) detection of the enzymatic activity toward G. stearothermophilus polysaccharide capsules. Streptomycin-resistant mutant of the host was generated and microbiological aspects of both the TP-84 and G. stearothermophilus 10 were determined. A new variant of polyethyleneimine (PEI)-mediated purification method was developed, using the novel TP-84 depolymerase as a model. The enzyme was characterized. Three depolymerase forms were detected: soluble, unbound proteins in the bacteriophage/cells lysate and another integrated into the TP-84 virion. Conclusions The novel TP-84 depolymerase was purified and characterized. The enzyme exists in three forms. The soluble, unbound forms are probably responsible for the weakening of the capsules of the uninfected bacterial cells. The form integrated into virion particles may generate a local passage for the invading TP-84. The developed PEI purification method appears well suited for the scaled-up or industrial production of bacteriophage proteins.
So far, Bacillus species bacteria are being used as bacteria concentrates, supplementing cleaning preparations in order to reduce odor and expel pathogenic bacteria. Here, we discuss the potential of Bacillus species as ‘natural’ probiotics and evaluate their microbiological characteristics. An industrial microbiological concentrate CS-4 of mixed Bacillus species cultures was tested, which may be a promising bacteria source for food probiotic preparation for supplementary diet. In this study, antagonistic activities and probiotic potential of Bacillus species, derived from an industrial microbiological concentrate, were demonstrated. The cell free supernatants (CFS) from Bacillus licheniformis mostly inhibited the growth of foodborne pathogenic bacteria, such as Escherichia coli O157:H7 ATCC 35150, Salmonella Enteritidis KCCM 12021, and Staphylococcus aureus KCCM 11335, while some of Bacillus strains showed synergistic effect with foodborne pathogenic bacteria. Moreover, Bacillus strains identified by the MALDI TOF-MS method were found sensitive to chloramphenicol, kanamycin, and rifampicin. B. licheniformis and B. cereus displayed the least sensitivity to the other tested antibiotics, such as ampicillin, ampicillin and sulfbactam, streptomycin, and oxacillin and bacitracin. Furthermore, some of the bacterial species detected extended their growth range from the mesophilic to moderately thermophilic range, up to 54 °C. Thus, their potential sensitivity to thermophilic TP-84 bacteriophage, infecting thermophilic Bacilli, was tested for the purpose of isolation a new bacterial host for engineered bionanoparticles construction. We reason that the natural environmental microflora of non-pathogenic Bacillus species, especially B. licheniformis, can become a present probiotic remedy for many contemporary issues related to gastrointestinal tract health, especially for individuals under metabolic strain or for the increasingly growing group of lactose-intolerant people.
There was an error in the original publication [...]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.