Predictability of human movement is a theoretical upper bound for the accuracy of movement prediction models, which serves as a reference value showing how regular a dataset is and to what extent mobility can be predicted. Over the years, the predictability of various human mobility datasets was found to vary when estimated for differently processed datasets. Although attempts at the explanation of this variability have been made, the extent of these experiments was limited. In this study, we use high-precision movement trajectories of individuals to analyse how the way we represent the movement impacts its predictability and thus, the outcomes of analyses made on these data. We adopt a number of methods used in the last 11 years of research on human mobility and apply them to a wide range of spatio-temporal data scales, thoroughly analysing changes in predictability and produced data. We find that spatio-temporal resolution and data processing methods have a large impact on the predictability as well as geometrical and numerical properties of human mobility data, and we present their nonlinear dependencies.
The heavenly bodies are objects that swim in the outer space. The classification of these objects is a challenging task for astronomers. This article presents a novel methodology that enables an efficient and accurate classification of cosmic objects (3 classes) based on evolutionary optimization of classifiers. This research collected the data from Sloan Digital Sky Survey database. In this work, we are proposing to develop a novel machine learning model to classify stellar spectra of stars, quasars and galaxies. First, the input data are normalized and then subjected to principal component analysis to reduce the dimensionality. Then, the genetic algorithm is implemented on the data which helps to find the optimal parameters for the classifiers. We have used 21 classifiers to develop an accurate and robust classification with fivefold cross-validation strategy. Our developed model has achieved an improvement in the accuracy using nineteen out of twenty-one models. We have obtained the highest classification accuracy of 99.16%, precision of 98.78%, recall of 98.08% and F1-score of 98.32% using evolutionary system based on voting classifier. The developed machine learning prototype can help the astronomers to make accurate classification of heavenly bodies in the sky. Proposed evolutionary system can be used in other areas where accurate classification of many classes is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.