Increased levels of a soluble form of endoglin (sEng) circulating in plasma have been detected in various pathological conditions related to cardiovascular system. High concentration of sEng was also proposed to contribute to the development of endothelial dysfunction, but there is no direct evidence to support this hypothesis. Therefore, in the present work we analyzed whether high sEng levels induce endothelial dysfunction in aorta by using transgenic mice with high expression of human sEng. Transgenic mice with high expression of human sEng on CBAxC57Bl/6J background (Sol-Eng +) and age-matched transgenic littermates that do not develop high levels of human soluble endoglin (control animals in this study) on chow diet were used. As expected, male and female Sol-Eng + transgenic mice showed higher levels of plasma concentrations of human sEng as well as increased blood arterial pressure, as compared to control animals. Functional analysis either in vivo or ex vivo in isolated aorta demonstrated that the endothelium-dependent vascular function was similar in Sol-Eng + and control mice. In addition, Western blot analysis showed no differences between Sol-Eng + and control mice in the protein expression levels of endoglin, endothelial NO-synthase (eNOS) and pro-inflammatory ICAM-1 and VCAM-1 from aorta. Our results demonstrate that high levels of soluble endoglin alone do not induce endothelial dysfunction in Sol-Eng + mice. However, these data do not rule out the possibility that soluble endoglin might contribute to alteration of endothelial function in combination with other risk factors related to cardiovascular disorders.
Aims: A soluble form of endoglin (sEng) was proposed to participate in the induction of endothelial dysfunction in small blood vessels. Here, we tested the hypothesis that high levels of sEng combined with a high-fat diet induce endothelial dysfunction in an atherosclerosis-prone aorta. Methods and Results: Six-month-old female and male transgenic mice overexpressing human sEng (Sol-Eng+) with low (Sol-Eng+low) or high (Sol-Eng+high) levels of plasma sEng were fed a high-fat rodent diet containing 1.25% cholesterol and 40% fat for 3 months. The plasma cholesterol and mouse sEng levels did not differ in the Sol-Eng+high and Sol-Eng+low mice. The expression of proinflammatory (P-selectin, ICAM-1, pNFκB and COX-2) and oxidative-stress-related markers (HO-1, NOX-1 and NOX-2) in the aortas of Sol-Eng+high female mice was significantly higher than in Sol-Eng+low female mice. Endothelium-dependent vasodilatation induced by acetylcholine was preserved better in the Sol-Eng+ high female mice than in the Sol-Eng+low female mice. Conclusion: These results suggest that high concentrations of sEng in plasma in combination with a high-fat diet induce the simultaneous activation of proinflammatory, pro-oxidative and vasoprotective mechanisms in mice aorta and the balance of these biological processes determines whether the final endothelial phenotype is adaptive or maladaptive.
C57BL/6J (B6) mice were demonstrated to be the most susceptible and C3H/HeJ (C3H) mice the most resistant to development of atherosclerosis. We hypothesized, whether pro-atherogenic (P-selectin, VCAM-1, and ICAM-1) and anti-atherogenic (endoglin and eNOS) proteins are expressed differently in aorta before the onset of atherosclerosis in these two mouse strains. B6 mice (n = 16) and C3H mice (n = 16) sustained on either chow or cholesterol (1 %) diet for 8 weeks. Biochemical analysis of lipoprotein profile and Western blot analysis of P-selectin, VCAM-1, ICAM-1, eNOS, endoglin, peNOS and TGF-βRII in aorta were performed. Western blot analysis revealed a lower expression of P-selectin by 7 %, VCAM-1 by 51 %, ICAM-1 by 6 %, and a higher expression of eNOS (by 18 %) in C3H mice in comparison with B6 mice after cholesterol diet. Further analysis revealed that cholesterol diet significantly increased the expression of endoglin (by 97 %), TGF-βRII (by 50 %), eNOS (by 21 %) and peNOS (by 122 %) in C3H mice, but not in B6 mice. We propose that lower expression of P-selectin, VCAM-1 and ICAM-1 and higher expression of eNOS in vivo in aorta of C3H mice might represent another potential mechanism for C3H mice being less susceptible to atherosclerosis when compared to B6 mice. In addition, endoglin seems to be involved in an upregulation of eNOS only in C3H mice. Thus, we propose that aorta of C3H mice is less prone to the expression of pro-inflammatory and endothelial dysfunction markers when compared to B6 mice, regardless of lipoprotein profile and before any signs of atherosclerotic process.
A soluble form of endoglin (sEng) released into the circulation was suggested to be a direct inducer of endothelial dysfunction, inflammation and contributed to the development of hypertension by interfering with TGF-β signaling in cardiovascular pathologies. In the present study, we assessed the hypothesis that high sEng level-induced hypertension via a possible sEng interference with TGF-β signaling pathways may result in inflammatory, structural or fibrotic changes in hearts of Sol-Eng+ mice (mice with high levels of soluble endoglin) fed either chow or high-fat diet. Female Sol-Eng+ mice and their age matched littermates with low plasma levels of sEng were fed either chow or high-fat diet (HFD). Heart samples were subsequently analyzed by histology, qRT-PCR and Western blot analysis. In this study, no differences in myocardial morphology/hypertrophy and possible fibrotic changes between Sol-Eng+ mice and control mice were detected on both chow and HFD. The presence of sEng did not significantly affect the expression of selected members of TGF-β signaling (membrane endoglin, TGFβRII, ALK-5, ALK-1, Id-1, PAI-1 and activated Smad proteins-pSmad 1,5 and pSmad 2,3), inflammation, heart remodeling (PDGFb, Col1A1) and endothelial dysfunction (VCAM-1, ICAM-1) in the hearts of Sol-Eng+ mice compared to control mice on both chow and high-fat diet. High levels of soluble endoglin did not affect microscopic structure (profibrotic and degenerative cardiomyocyte changes), and specific parts of TGF-β signaling, endothelial function and inflammation in the heart of Sol-Eng+ mice fed both chow diet or HFD. However, we cannot rule out a possibility that a long-term chronic exposure (9 months and more) to soluble endoglin alone or combined with other cardiovascular risk factors may contribute to alterations of heart function and structure in Sol-Eng+ mice, which is the topic in our lab in ongoing experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.