A large number of retaining glycosidases catalyze both hydrolysis and transglycosylation reactions, but little is known about what determines the balance between these two activities (transglycosylation/hydrolysis ratio). We previously obtained by directed evolution the mutants F401S and N282T of Thermus thermophilus β-glycosidase (Ttβ-gly, glycoside hydrolase family 1 (GH1)), which display a higher transglycosylation/hydrolysis ratio than the wild-type enzyme. In order to find the cause of these activity modifications, and thereby set up a generic method for easily obtaining transglycosidases from glycosidases, we determined their X-ray structure. No major structural changes could be observed which could help to rationalize the mutagenesis of glycosidases into transglycosidases. However, as these mutations are highly conserved in GH1 β-glycosidases and are located around the -1 site, we pursued the isolation of new transglycosidases by targeting highly conserved amino acids located around the active site. Thus, by single-point mutagenesis on Ttβ-gly, we created four new mutants that exhibit improved synthetic activity, producing disaccharides in yields of 68-90% against only 36% when native Ttβ-gly was used. As all of the chosen positions were well conserved among GH1 enzymes, this approach is most probably a general route to convert GH1 glycosidases into transglycosidases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.