Changes in tissue glutathione antioxidant system in streptozotocin-induced diabetic rats for a period of 15 weeks were examined. Total glutathione level was significantly increased in kidney tissue, but were slightly decreased and increased in liver and heart tissues, respectively. The small changes in total glutathione level in the liver and heart, though not statistically significant, were associated with reciprocal alterations in the activity of gamma-glutamylcysteine synthetase (GCS). While the GCS activity was not changed in kidney tissue, the activity of gamma-glutathione peroxidase was significantly increased in kidney tissue. Insulin treatment could completely or partly normalize almost all of these changes induced by diabetes. However, the decrease in hepatic glutathione S-transferases activity in diabetic rats was not reversed by the insulin treatment. The ensemble of results suggests that the diabetes-induced alterations in tissue glutathione antioxidant system may possibly reflect an inter-organ antioxidant response to a generalized increase in tissue oxidative stress associated with diabetes.
Pretreating female Balb/c mice with schisandrin B (Sch B) at increasing daily doses (1-4 mmol/kg) for 3 days caused dose-dependent increases in hepatic glutathione S-transferase (GST) and glutathione reductase (GRD) activities. However, the activities of glucose-6-phosphate dehydrogenase (G6PDH), Se-glutathione peroxidase (GPX), and gamma-glutamylcysteine synthetase (GCS) were down-regulated to varying degrees in a dose-dependent manner. While there were biphasic changes in hepatic reduced glutathione (GSH) level as well as susceptibility of hepatic tissue homogenates to in vitro peroxide-induced GSH depletion, a gradual decrease in hepatic malondialdehyde content was observed. The beneficial effect of Sch B on the hepatic GSH anti-oxidant system became more evident after CCl4 challenge. The same Sch B pretreatment regimen caused a dose-dependent protection against carbon tetrachloride (CCl4)-induced hepatotoxicity. The hepatoprotection was associated with significant enhancement in hepatic GSH status, as indicated by the substantial increase in tissue GSH levels and the corresponding decrease in susceptibility of tissue homogenates to GSH depletion. Where the activities of GST and GRD were increased linearly over non-CCl4 control values, there was also a gradual elevation in G6PDH activity upon administration of increasing doses of Sch B. In contrast, GPX activity was moderately down-regulated. The ensemble of results suggests that the hepatoprotection afforded by Sch B pretreatment may mainly be attributed to the enhancement in the functioning of the hepatic GSH anti-oxidant system, possibly through stimulating the activities of GSH related enzymes.
The in vivo antioxidant action of a lignan-enriched extract of the fruit of Schisandra chinensis (FS) and an anthraquinone-containing extract of the root of Polygonum multiflorum (PME) was compared with their respective active constituents schisandrin B (Sch B) and emodin by examining their effect on hepatic mitochondrial glutathione antioxidant status in control and carbon tetrachloride (CCl 4 )-intoxicated mice. FS and PME pretreatments produced a dose-dependent protection against CCl 4 hepatotoxicity, with the effect of FS being more potent. Pretreatment with Sch B, emodin or alpha-tocopherol (alpha-Toc) also protected against CCl 4 hepatotoxicity, with the effect of Sch B being more potent. The extent of hepatoprotection afforded by FS/Sch B and PME/emodin pretreatment against CCl 4 toxicity was found to correlate well with the degree of enhancement in hepatic mitochondrial glutathione antioxidant status, as evidenced by increases in reduced glutathione level and activities of glutathione reductase, glutathione peroxidase as well as glutathione S-transferases, in both control and CCl 4 -intoxicated mice. alpha-Toc, which did not enhance mitochondrial glutathione antioxidant status, seemed to be less potent in protecting against CCl 4 hepatotoxicity. The ensemble of results indicates that FS/PME produced a more potent in vivo antioxidant action than alpha-Toc by virtue of their ability to enhance hepatic mitochondrial glutathione antioxidant status and that the differential potency of FS and PME can be attributed to the difference in in vivo antioxidant potential between Sch B and emodin. Abbreviations. ALT:alanine aminotransferases CCl 4 :carbon tetrachloride FS:lignan-enriched extract of Schisandra fruit GRD:glutathione reductase GSH:reduced glutathione GSH-Px: Se-glutathione peroxidase GST:glutathione S-transferases mt:mitochondrial MDA:malondialdehyde PME:anthraquinone-containing fraction of Polygonum root Sch B:schisandrin B SDH:sorbitol dehydrogenase alpha-Toc:alpha-tocopherol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.