Analog VLSI on-chip learning Neural Networks represent a mature technology for a large number of applications involving industrial as well as consumer appliances. This is particularly the case when low power consumption, small size and/or very high speed are required. This approach exploits the computational features of Neural Networks, the implementation efficiency of analog VLSI circuits and the adaptation capabilities of the on-chip learning feedback schema. High-speed video cameras are powerful tools for investigating for instance the biomechanics analysis or the movements of mechanical parts in manufacturing processes. In the past years, the use of CMOS sensors instead of CCDs has enabled the development of high-speed video cameras offering digital outputs, readout flexibility, and lower manufacturing costs. In this paper, we propose a high-speed smart camera based on a CMOS sensor with embedded Analog Neural Network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.