Interleukin-33 (IL-33), the most recently identified member of the IL-1 family, induces synthesis of T Helper 2 (Th2)-type cytokines via its heterodimeric ST2/IL-1RAcP receptor. Th2-type cytokines play an important role in fibrosis; thus, we investigated the role of IL-33 in liver fibrosis. IL-33, ST2 and IL-1RAcP gene expression was analysed in mouse and human normal (n= 6) and fibrotic livers (n= 28), and in human hepatocellular carcinoma (HCC; n= 22), using real-time PCR. IL-33 protein was detected in normal and fibrotic liver sections and in isolated liver cells using Western blotting and immunolocalization approaches. Our results showed that IL-33 and ST2 mRNA was overproduced in mouse and human fibrotic livers, but not in human HCC. IL-33 expression correlated with ST2 expression and also with collagen expression in fibrotic livers. The major sources of IL-33 in normal liver from both mice and human beings are the liver sinusoidal endothelial cells and, in fibrotic liver, the activated hepatic stellate cells (HSC). Moreover, IL-33 expression was increased in cultured HSC when stimulated by pro-inflammatory cytokines. In conclusion, IL-33 is strongly associated with fibrosis in chronic liver injury and activated HSC are a source of IL-33.
Airway inflammation plays a major role in the pathogenesis of influenza viruses and can lead to a fatal outcome. One of the challenging objectives in the field of influenza research is the identification of the molecular bases associated to the immunopathological disorders developed during infection. While its precise function in the virus cycle is still unclear, the viral protein PB1-F2 is proposed to exert a deleterious activity within the infected host. Using an engineered recombinant virus unable to express PB1-F2 and its wild-type homolog, we analyzed and compared the pathogenicity and host response developed by the two viruses in a mouse model. We confirmed that the deletion of PB1-F2 renders the virus less virulent. The global transcriptomic analyses of the infected lungs revealed a potent impact of PB1-F2 on the response developed by the host. Thus, after two days post-infection, PB1-F2 invalidation severely decreased the number of genes activated by the host. PB1-F2 expression induced an increase in the number and level of expression of activated genes linked to cell death, inflammatory response and neutrophil chemotaxis. When generating interactive gene networks specific to PB1-F2, we identified IFN-γ as a central regulator of PB1-F2-regulated genes. The enhanced cell death of airway-recruited leukocytes was evidenced using an apoptosis assay, confirming the pro-apoptotic properties of PB1-F2. Using a NF-kB luciferase adenoviral vector, we were able to quantify in vivo the implication of NF-kB in the inflammation mediated by the influenza virus infection; we found that PB1-F2 expression intensifies the NF-kB activity. Finally, we quantified the neutrophil recruitment within the airways, and showed that this type of leukocyte is more abundant during the infection of the wild-type virus. Collectively, these data demonstrate that PB1-F2 strongly influences the early host response during IAV infection and provides new insights into the mechanisms by which PB1-F2 mediates virulence.
IL-33, a novel IL-1 family member, is crucially expressed and involved in pulmonary diseases, but its regulation in viral diseases such as influenza A virus (IAV) remains unclear. This study aimed to characterize the expression and release of IL-33 in lungs of IAV-infected mice in vivo and in murine respiratory epithelial cells (MLE-15) in vitro. Our results provide evidence of up-regulation of IL-33 mRNA in IAV-infected murine lungs, compared with noninfected control mice. The overexpression of IL-33 was positively correlated with a significant increase in mRNA encoding the proinflammatory cytokines TNF-α, IFN-γ, IL-1β, and IL-6, and was also associated with an increase in IFN-β mRNA. A profound overexpression of IL-33 protein was evident in IAV-infected murine lungs and bronchoalveolar lavages of influenza-infected mice, compared with low concentrations in naive lungs in vivo. Immunolocalization highlighted the cellular expression of IL-33 in alveolar epithelial and endothelial cells, along with increased infiltrate cells in virus-infected lungs. Further in vitro experiments showed an induction of IL-33 transcript-in MLE-15 cells and human epithelial cells (A549) infected with different strains of IAV in comparison with noninfected cells. In conclusion, our findings evidenced a profound expression of IL-33 in lungs during both in vivo and in vitro IAV infections, suggesting a role for IL-33 in virus-induced lung infections.
Interleukin-33 (IL-33) is thought to be released during cellular death as an alarmin cytokine during the acute phase of disease, but its regulation in vivo is poorly understood. We investigated the expression of IL-33 in two mouse models of acute hepatitis by administering either carbon tetrachloride (CCl 4 ) or concanavalin A (ConA). IL-33 was overexpressed in both models but with a stronger induction in ConA-induced hepatitis. IL-33 was weakly expressed in vascular and sinusoidal endothelial cells from normal liver and was clearly induced in CCl 4 -treated mice. Surprisingly, we found that hepatocytes strongly expressed IL-33 exclusively in the ConA model. CD1d knock-out mice, which are deficient in NKT cells and resistant to ConA-induced hepatitis, no longer expressed IL-33 in hepatocytes following ConA administration. Interestingly, invariant NKT (iNKT) cells adoptively transferred into ConA-treated CD1d KO mouse restored IL-33 expression in hepatocytes. This strongly suggests that NKT cells are responsible for the induction of IL-33 in hepatocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.