Influenza A is a highly contagious single-stranded RNA virus that infects both the upper and lower respiratory tracts of humans. The host innate immune Tolllike receptor (TLR) 3 was shown previously in cells of myeloid origin to recognize the viral replicative, intermediate double-stranded RNA (dsRNA). Thus, dsRNA may be critical for the outcome of the infection. Here we first compared the activation triggered by either influenza A virus or dsRNA in pulmonary epithelial cells. We established that TLR3 is constitutively expressed in human alveolar and bronchial epithelial cells, and we describe its intracellular localization. Expression of TLR3 was positively regulated by the influenza A virus and by dsRNA but not by other inflammatory mediators, including bacterial lipopolysaccharide, the cytokines tumor necrosis factor-␣ and interleukin (IL)-1, and the protein kinase C activator phorbol 12-myristate 13-acetate. We also demonstrated that TLR3 contributes directly to the immune response of respiratory epithelial cells to influenza A virus and dsRNA, and we propose a molecular mechanism by which these stimuli induce epithelial cell activation. This model involves mitogen-activated protein kinases, phosphatidylinositol 3-kinase/ Akt signaling, and the TLR3-associated adaptor molecule TRIF but not MyD88-dependent activation of the transcription factors NF-B or interferon regulatory factor/interferon-sensitive response-element pathways. Ultimately, this signal transduction elicits an epithelial response that includes the secretion of the cytokines IL-8, IL-6, RANTES (regulated on activation normal T cell expressed and secreted), and interferon- and the up-regulation of the major adhesion molecule ICAM-1.
Influenza A virus (IAV) is the etiological agent of a highly contagious acute respiratory disease that causes epidemics and considerable mortality annually. Recently, we demonstrated, using an in vitro approach, that the pattern recognition Toll-like receptor (TLR)3 plays a key role in the immune response of lung epithelial cells to IAV. In view of these data and the fact that the functional role of TLR3 in vivo is still debated, we designed an investigation to better understand the role of TLR3 in the mechanisms of IAV pathogenesis and host immune response using an experimental murine model. The time-course of several dynamic parameters, including animal survival, respiratory suffering, viral clearance, leukocyte recruitment into the airspaces and secretion of critical inflammatory mediators, was compared in infected wild-type and TLR3 −/− mice. First, we found that the pulmonary expression of TLR3 is constitutive and markedly upregulated following influenza infection in control mice. Notably, when compared to wild-type mice, infected TLR3 −/− animals displayed significantly reduced inflammatory mediators, including RANTES (regulated upon activation, normal T cell expressed and secreted), interleukin-6, and interleukin-12p40/p70 as well as a lower number of CD8+ T lymphocytes in the bronchoalveolar airspace. More important, despite a higher viral production in the lungs, mice deficient in TLR3 had an unexpected survival advantage. Hence, to our knowledge, our findings show for the first time that TLR3-IAV interaction critically contributes to the debilitating effects of a detrimental host inflammatory response.
Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism. These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.