Influenza A is a highly contagious single-stranded RNA virus that infects both the upper and lower respiratory tracts of humans. The host innate immune Tolllike receptor (TLR) 3 was shown previously in cells of myeloid origin to recognize the viral replicative, intermediate double-stranded RNA (dsRNA). Thus, dsRNA may be critical for the outcome of the infection. Here we first compared the activation triggered by either influenza A virus or dsRNA in pulmonary epithelial cells. We established that TLR3 is constitutively expressed in human alveolar and bronchial epithelial cells, and we describe its intracellular localization. Expression of TLR3 was positively regulated by the influenza A virus and by dsRNA but not by other inflammatory mediators, including bacterial lipopolysaccharide, the cytokines tumor necrosis factor-␣ and interleukin (IL)-1, and the protein kinase C activator phorbol 12-myristate 13-acetate. We also demonstrated that TLR3 contributes directly to the immune response of respiratory epithelial cells to influenza A virus and dsRNA, and we propose a molecular mechanism by which these stimuli induce epithelial cell activation. This model involves mitogen-activated protein kinases, phosphatidylinositol 3-kinase/ Akt signaling, and the TLR3-associated adaptor molecule TRIF but not MyD88-dependent activation of the transcription factors NF-B or interferon regulatory factor/interferon-sensitive response-element pathways. Ultimately, this signal transduction elicits an epithelial response that includes the secretion of the cytokines IL-8, IL-6, RANTES (regulated on activation normal T cell expressed and secreted), and interferon- and the up-regulation of the major adhesion molecule ICAM-1.
Compartmentalization of designed metabolic pathways within protein based nanocompartments has the potential to increase reaction efficiency in multi-step biosynthetic reactions. We previously demonstrated proof-of-concept of this aim by targeting a functional enzyme to single cellular protein nanocompartments, which were formed upon recombinant expression of the Salmonella enterica LT2 ethanolamine utilization bacterial microcompartment shell proteins EutS or EutSMNLK in Escherichia coli. To optimize this system, increasing overall encapsulated enzyme reaction efficiency, factor(s) required for the production of more than one nanocompartment per cell must be identified. In this work we report that the cupin domain protein EutQ is required for assembly of more than one nanocompartment per cell. Overexpression of EutQ results in multiple nanocompartment assembly in our recombinant system. EutQ specifically interacts with the shell protein EutM in vitro via electrostatic interactions with the putative cytosolic face of EutM. These findings lead to the theory that EutQ could facilitate multiple nanocompartment biogenesis by serving as an assembly hub for shell proteins. This work offers insights into the biogenesis of Eut bacterial microcompartments, and also provides an improved platform for the production of protein based nanocompartments for targeted encapsulation of enzyme pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.