A 1468 bp cDNA coding for the chicken homolog of the human MBD4 G/T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (416 amino acids) shows 46% identity with the human MBD4 and the conserved catalytic region at the C-terminal end (170 amino acids) has 90% identity. The non-conserved region of the avian protein has no consensus sequence for the methylated DNA binding domain. The recombinant proteins from human and chicken have G/T mismatch as well as 5-methylcytosine (5-MeC) DNA glycosylase activities. When tested by gel shift assays, human recombinant protein with or without the methylated DNA binding domain binds equally well to symmetrically, hemimethylated DNA and non-methylated DNA. However, the enzyme has only 5-MeC DNA glycosylase activity with the hemimethylated DNA. Footprinting of human MBD4 and of an N-terminal deletion mutant with partially depurinated and depyrimidinated substrate reveal a selective binding of the proteins to the modified substrate around the CpG. As for 5-MeC DNA glycosylase purified from chicken embryos, MBD4 does not use oligonucleotides containing mCpA, mCpT or mCpC as substrates. An mCpG within an A+T-rich oligonucleotide is a much better substrate than an A+T-poor sequence. The K:(m) of human MBD4 for hemimethylated DNA is approximately 10(-7) M with a V:(max) of approximately 10(-11) mol/h/microgram protein. Deletion mutations show that G/T mismatch and 5-MeC DNA glycosylase are located in the C-terminal conserved region. In sharp contrast to the 5-MeC DNA glycosylase isolated from the chicken embryo DNA demethylation complex, the two enzymatic activities of MBD4 are strongly inhibited by RNA. In situ hybridization with antisense RNA indicate that MBD4 is only located in dividing cells of differentiating embryonic tissues.
We previously have shown that DNA demethylation by chicken embryo 5-methylcytosine DNA glycosylase (5-MCDG) needs both RNA and proteins. One of these proteins is a RNA helicase. Further peptides were sequenced, and three of them are identical to the mammalian G͞T mismatch DNA glycosylase. A 3,233-bp cDNA coding for the chicken homologue of human G͞T mismatch DNA glycosylase was isolated and sequenced. The derived amino acid sequence (408 aa) shows 80% identity with the human G͞T mismatch DNA glycosylase, and both the C and N-terminal parts have about 50% identity. As for the highly purified chicken embryo DNA demethylation complex the recombinant protein expressed in Escherichia coli has both G͞T mismatch and 5-MCDG activities. The recombinant protein has the same substrate specificity as the chicken embryo 5-MCDG where hemimethylated DNA is a better substrate than symmetrically methylated CpGs. The activity ratio of G͞T mismatch and 5-MCDG is about 30:1 for the recombinant protein expressed in E. coli and 3:1 for the purified enzyme from chicken embryos. The incubation of a recombinant CpG-rich RNA isolated from the purified DNA demethylation complex with the recombinant enzyme strongly inhibits G͞T mismatch glycosylase while slightly stimulating the activity of 5-MCDG. Deletion mutations indicate that G͞T mismatch and 5-MCDG activities share the same areas of the N-and C-terminal parts of the protein. In reconstitution experiments RNA helicase in the presence of recombinant RNA and ATP potentiates the activity of 5-MCDG. recombinant protein ͉ hemimethylated DNA substrate T he generation and maintenance of specific DNA methylation patterns in vertebrates requires a complex interplay of DNA methyltransferases, demethylation reactions combined with cis and trans regulatory elements (for reviews see refs. 1 and 2). For the demethylation of DNA there are basically two possible reactions: the passive and the active demethylation. The passive DNA demethylation occurs by the inhibition of the maintenance DNA methyltransferase throughout cycles of replication, whereas active DNA demethylation requires specific enzymatic reactions. Among them, there are the replacement of 5-methylcytosine (5-Me) by cytosine (3-6) or the direct removal of the methyl group from 5-Me (7). Demethylation also can be obtained by a combination of both a passive and an active mechanism. In this case the product of the passive reaction is the formation of a hemimethylated DNA, which becomes the substrate of 5-MeC-DNA glycosylase (5-MCDG) (8). The presence of such an enzymatic activity has been detected in developing chicken embryos (9), mouse myoblasts (10), and mouse embryos and embryonic stem cells (J.-P.J., unpublished results). Recently we have shown that the demethylation of hemimethylated DNA by purified 5-MCDG requires both proteins and RNA (11-13). Peptides derived from the highly purified DNA demethylation complex have been characterized by mass spectrometry. One of the proteins present in the demethylation complex is a RNA helicase clo...
Recently we reported the purification of a mitogen-activated S6 kinase from Swiss mouse 3T3 fibroblasts and rat liver. The rat liver protein was cleaved with cyanogen bromide or trypsin and 17 of the resulting peptides were sequenced. DNA primers were generated from 3 peptides that had homology to sequences of the conserved catalytic domain of protein kinases. These primers were used in the polymerase chain reaction to obtain a 0.4-kilobase DNA fragment. This fragment was either radioactively labeled and hybridized to Northern blots of poly(A)+ mRNA or used to screen a rat liver cDNA library. Northern blot analysis revealed four transcripts of 2.5, 3.2, 4.0, and 6.0 kilobases, and five S6 kinase clones were obtained by screening the library. Only two of the clones, which were identical, encoded a full-length protein. This protein had a molecular weight of 56,160, which correlated closely to that of the dephosphorylated kinase determined by SDS/PAGE. The catalytic domain of the kinase resembles that of other serine/threonine kinases belonging to the second messenger subfamily of protein kinases.
Changes in gene expression during mouse myoblast differentiation were monitored by DNA microarray hybridisation. Four days after the onset of differentiation 2.37% of the genes increased in activity from a value of zero, whereas during the same time 1.68% of total genes had decreased expression. During the first 24 h of differentiation an average of 700 000 CpG sites per haploid genome were demethylated. Maximal loss of DNA methylation is attained after 2 days of differentiation, followed by a gradual remethylation. The highest demethylation is observed in highly repeated DNA sequences, followed by single copy sequences. When DNA replication is inhibited by aphidicolin or L-mimosine this genome-wide demethylation is still observed. During the first 3 h of differentiation there is an increase in the number of hemimethylated CpG sites, which disappear rapidly during the course of genome-wide hypomethylation. Transfection of cells with an antisense morpholino oligonucleotide to 5-methylcytosine DNA glycosylase (G/T mismatch DNA glycosylase) decreases both the activity of the enzyme and genome-wide demethylation. It is concluded that the genome-wide loss of DNA methylation in differentiating mouse myoblasts occurs in part by formation of hemimethylated CpG sites, which can serve as the substrate for 5-methylcytosine-DNA glycosylase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.