Several phenylpyrazole derivatives are selective inhibitors of chloride channel activities in insects. In this chemical family, fipronil is a powerful insecticide now widely used for several purposes. The dissipation of this molecule in a simplified aquatic ecosystem has been studied for 3 months, using (14)C-labeled fipronil. The main features of the complex process leading to fipronil transformation in this system were the following. The fipronil aqueous solution was submitted to two chemical transformations: the photodependent desulfuration of the side chain bound to the 4-position of the heterocyclic ring and the chemical hydrolysis of the nitrile function bound to the 3-position. Fipronil, rapidly transferred from the water solution to the organic matter, was protected from the previously mentioned chemical transformations but evolved to give two main metabolites, which were either reduced or oxidized in the side chain on the 4-position. These derivatives were powerful insecticides as shown by LC(50) measurements on Aedes aegypti larvae (LC(50) for CF(3)-S-R and CF(3)-SO(2)-R = 8.8 nM). During the course of this experiment, nitrile hydrolysis took place slowly, originating either from the chemical hydrolysis in the aqueous solution or from enzymatic hydrolysis inside the microbial biomass. The fipronil-amide (3-NH(2)-CO-R') derivative, although much more polar than fipronil itself, was mostly bound to the organic matter. Other more polar derivatives were also detected but in very small amounts. No (14)CO emission was observed during the experiment.
The phenylpyrazole insecticide, fipronil, is used in seed coating against Agriotes larvae, which infest mainly corn and sunflower. Coating the seeds of the cultivated plants with fipronil has proven its effectiveness against Agriotes populations. In the case of sunflower or even corn, the possible root uptake of this insecticide may lead to a toxic effect against pollinators such as honeybees. In the present report, the uptake and transport of fipronil inside the sunflower seedling was studied in the laboratory. In a first study, sunflower was cultivated on an aqueous medium containing fipronil. An intense root uptake of fipronil occurred, leading to a transport into leaves depending upon transpiration. In a second study, plants were cultivated on a soil in which fipronil was uniformly distributed. Under our soil conditions (20% organic carbon), the partition coefficient between soil and water (K(d)) was found to be equal to 386 +/- 30. The average rate of fipronil transfer from soil water to seedlings was from 2 to 2.6 times lower than water transfer. During the 3 week experiment, 55% of recovered labeled compounds was in the parent form and 35% had been converted to lipophilic metabolites, with either a 4-CF(3)-SO(2) or 4-CF(3)-S substituant, which are also very potent lipophilic insecticides. This paper suggests that the possible uptake of fipronil by sunflower seedlings under agronomic conditions is mainly controlled by the physicochemical characteristics of the seed-coating mixture.
Fipronil is a recently discovered insecticide of the phenylpyrazole series. It has a highly selective biochemical mode of action, which has led to its use in a large number of important agronomical, household, and veterinary applications. Previous studies have shown that, during exposure to light, fipronil is converted into a desulfurated derivative (desulfinyl-fipronil), which has slightly reduced insecticidal activity. In this study, the photodegradation of fipronil was studied in solution at low light intensities (sunlight or UV lamp). In addition to desulfinyl-fipronil, a large number of minor photoproducts were observed, including diversely substituted phenylpyrazole derivatives and aniline derivatives that had lost the pyrazole ring. Desulfinylfipronil itself was shown to be relatively stable under both UV light and sunlight, with only limited changes occurring in the substitution of the aromatic ring. Since this compound accumulated to levels corresponding to only 30-55% of the amount of fipronil degraded, it was concluded that one or more alternative pathways of photodegradation must be operating. On the basis of the structurally identified photoproducts, it is proposed that fipronil photodegradation occurs via at least two distinct pathways, one of which involves desulfuration at the 4-position of the pyrazole ring giving the desulfinyl derivative and the other of which involves a different modification of the 4-substituent, leading to cleavage of the pyrazole ring and the formation of aniline derivatives. The latter compounds do not accumulate to high levels and may, therefore, be degraded further. The ecological significance of these results is discussed, particularly with regard to the insecticidal activity of the photoproducts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.