MicroRNAs are small non coding RNAs that typically inhibit the translation and stability of messanger RNAs (mRNAs), controlling genes involved in cellular processes such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and migration. Thus, miRNAs have been implicated in the regulation of virtually all signaling circuits within a cell and their dysregulation has been shown to play an essential role in the development and progression of cancer. Here, after a brief description of the miRNA genomics, biogenesis and function, we discuss the effects of miRNA deregulation in the cellular pathways that lead to the progressive conversion of normal cells into cancer cells and the potential to develop new molecular miRNA-targeted therapies.
Summary Lung and liver cancers are among the most deadly types of cancer. Despite improvements in treatment over the past few decades, patient survival remains poor, underlining the need for development of targeted therapies. MicroRNAs represent a class of small RNAs, frequently deregulated in human malignancies. We now report that miR221&222 are over-expressed in aggressive non small cell lung cancer and hepatocarcinoma cells, as compared with less invasive and/or normal lung and liver cells. We show that miR-221&222, by targeting PTEN and TIMP3 tumor suppressors, induce TRAIL resistance and enhance cellular migration through the activation of the AKT pathway and metallopeptidases. Finally, we demonstrate that the MET oncogene is involved in miR-221&222 activation, through the c-Jun transcription factor.
Acute myeloid leukemia (AML) carrying NPM1 mutations and cytoplasmic nucleophosmin (NPMc؉ AML) accounts for about one-third of adult AML and shows distinct features, including a unique gene expression profile. MicroRNAs (miRNAs) are small noncoding RNAs of 19 -25 nucleotides in length that have been linked to the development of cancer. Here, we investigated the role of miRNAs in the biology of NPMc؉ AML. The miRNA expression was evaluated in 85 adult de novo AML patients characterized for subcellular localization/ mutation status of NPM1 and FLT3 mutations using a custom microarray platform. Data were analyzed by using univariate t test within BRB tools. We identified a strong miRNA signature that distinguishes NPMc؉ mutated (n ؍ 55) from the cytoplasmic-negative (NPM1 unmutated) cases (n ؍ 30) and includes the up-regulation of miR-10a, miR-10b, several let-7 and miR-29 family members. Many of the down-regulated miRNAs including miR-204 and miR-128a are predicted to target several HOX genes. Indeed, we confirmed that miR-204 targets HOXA10 and MEIS1, suggesting that the HOX upregulation observed in NPMc؉ AML may be due in part by loss of HOX regulators-miRNAs. FLT3-ITD؉ samples were characterized by upregulation of miR-155. Further experiments demonstrated that the up-regulation of miR-155 was independent from FLT3 signaling. Our results identify a unique miRNA signature associated with NPMc؉ AML and provide evidence that support a role for miRNAs in the regulation of HOX genes in this leukemia subtype. Moreover, we found that miR-155 was strongly but independently associated with FLT3-ITD mutations. FLT3-ITD ͉ HOX ͉ NPM1A cute myeloid leukemia (AML) arises from multiple and sequential genetic alterations involving hematopoietic precursors (1). In Ϸ25% of cases, specific chromosomal translocations like the t(8;21), inv(16) or t(15;17) represent the initial events leading to malignant transformation (1) and are associated with a good outcome. In contrast, 40-50% of AMLs have normal karyotype by conventional banding analysis and are characterized by great molecular and clinical heterogeneity (2). Recent work has identified novel molecular abnormalities in normal karyotype AML (NK-AML) that has improved the classification and risk stratification of this large subgroup of patients. Among them, internal tandem duplications in the juxta-membrane domain or mutations in the second tyrosine kinase domain (TKD) of the FLT3 gene have been found in 30-45% of NK-AML (3). Both types of mutations constitutively activate FLT3 and FLT3-ITD mutations have been associated with increased risk of relapse (4). Mutations in the myeloid transcription factor CEBPA have been detected in 10-15% of NK-AML (5) and are associated with favorable prognosis (5, 6).Mutations of the nucleophosmin (NPM1) gene, usually occurring at exon-12 (7) and more rarely at exon-11 (8) represent the most common genetic alteration in AML-NK (50-60% of cases) and account for about one-third of all adult AML (7). This gene encodes for a ubiquitously expressed...
Summary In multiple myeloma (MM), an incurable B-cell neoplasm, mutation or deletion of p53 is rarely detected at diagnosis. Using small-molecule inhibitors of MDM2, we provide evidence that miR-192, 194 and 215, which are down-regulated in a subset of newly diagnosed MMs, can be transcriptionally activated by p53 and then modulate MDM2 expression. Furthermore, ectopic re-expression of these miRNAs in MM cells increases the therapeutic action of MDM2 inhibitors in vitro and in vivo by enhancing their p53-activating effects. In addition, miR-192 and 215 target the IGF pathway, preventing enhanced migration of plasma cells into bone marrow. The results suggest that these miRNAs are positive regulators of p53 and that their down-regulation plays a key role in MM development.
The involvement of the MET oncogene in de novo and acquired resistance of non-small cell lung cancers (NSCLC) to tyrosine kinase inhibitors (TKIs) has been reported, but the precise mechanism by which MET overexpression contributes to TKI-resistant NSCLC remains unclear. MicroRNAs (miRNAs) negatively regulate gene expression and their dysregulation has been implicated in tumorigenesis. To understand the role of microRNAs in TKI-resistant NSCLC, we examined TK receptor-mediated microRNA changes. Here we report that miR-30b/c and miR-221/222, modulated by both EGF and MET receptors, and miR-103, -203, controlled only by MET, play important roles in gefitinib-induced apoptosis and epithelial-mesenchymal transition (EMT) of NSCLC cells, in vitro and in vivo, by inhibiting the expression of Bim, APAF-1, PKC-ε and SRC genes. The finding suggests that modulation of specific microRNAs may provide a therapeutic approach for future treatment of NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.