Today’s technological development inevitably defies educational approaches in terms of future demand for skills to be imparted. Among other skills, the capacity to operate and communicate effectively within multidisciplinary realms is duly considered as the fundamental one. Educational robotics (ER) and STEM do constitute a suitable framework for the development of these specific skills. Moreover, competences such as computational (CT) and design thinking (DT) have already been nominated as necessary to adapt to the future and relevant for innovation. The years of independent development and evidence of practical implementation justify the maturity of the related methodological approaches and emerging gradual shift towards their combination. In this regard, the actual work presents a pilot experience of the combined application of computational design thinking and educational robotics in the case of a 9-to-11-year-old target audience. The approach utilizes a novel platform developed under the project Coding4Girls combining design thinking and game-based learning and introduces physical computing through consecutive assembling and programming an IR-controlled robot-car. The core of the learning path consists in the development of primary programming skills and their gradual transfer into the physical realm. The method, as the study demonstrates, is capable of helping keep students both motivated and result-oriented throughout the duration of the course.
According to worldwide surveys (such as PISA and TIMSS), European students often lack both mathematical and key basic competencies in science and technology. The mean scores for mathematics obtained by students are below the Organisation for Economic Co-operation and Development average (OECD). The learning of the mathematics literacy enables students to contribute effectively in actual society, enhancing their employment prospects. This paper intends to describe an innovative learning and teaching approach, actually in the development phase, in the field of mathematics for 14-16 years old students through the combination of current approaches used in Europe (such as inquiry based learning and technology-enhanced learning) and the Asian one, the Singapore's method based on three phases, concrete-pictorial-abstract, through the use of artworks. This intends to allow the development of a more effective educational and training environment for teachers and their students who will benefit from the use of more attractive and fun pedagogical tools in the study of mathematics.
The dynamic spread of 3D printing technologies and open-source electronics prototyping platforms has significantly enriched the diversity of instruments used within educational robotics (ER) settings. An active, low-entry-level community offering ready-to-use libraries for a broad variety of devices assists in the development of quite sophisticated projects. However, the flipside of the coin is represented by the current research findings, which reveal that students’ interest in science, technology, engineering and mathematics (STEM) subjects has declined across Europe, as manifested in difficulties when approaching scientific topics and dealing with problems and phenomena studied from a multidisciplinary perspective. Consequently, a significant percentage of youths are at risk of social exclusion due to the direct relationship between low academic achievements and school dropout. Moreover, learners lack guidance in applied and life-context skills, such as creative thinking, problem solving, and collaboration, which highlights the need to introduce innovative pedagogical approaches. In this context, the design thinking (DT) methodology was proposed to tackle the problem. Originating in the development of psychological studies on creativity in the 1950s within the educational context, DT is known to foster creative thinking, help develop empathy, promote action-oriented actions, improve meta-cognitive awareness, contribute to problem-solving skills, and enhance students’ imagination. The last point supports the students’ development of critical thinking, social inclusion, teamwork skills, and academic performance. Thus, this paper introduces a methodological framework combining DT with ER classes. First, to approach the problem, the teachers’ survey data were collected and analysed to reveal the respondents’ level of integration of the DT methodology into current school curricula. Then, the work focused on the application of this framework in a learning experience by addressing the weakest points established and their elaboration through the combined ER and DT classes in the context of secondary schools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.