Understanding the fate of adult-generated neurons and the mechanisms that influence them requires consistent labeling and tracking of large numbers of stem cells. We generated a nestin-CreER T2 /R26R-yellow fluorescent protein (
Despite abundant expression of DNA methyltransferases (Dnmt’s) in brain, the regulation and behavioral role of DNA methylation remain poorly understood. We find that Dnmt3a expression is regulated in mouse nucleus accumbens (NAc) by chronic cocaine and chronic social defeat stress. Moreover, NAc specific manipulations that block DNA methylation potentiate cocaine reward and exert antidepressant-like effects, whereas NAc specific Dnmt3a overexpression attenuates cocaine reward and is pro-depressant. On a cellular level, we show that chronic cocaine selectively increases thin dendritic spines on NAc neurons and that DNA methylation is both necessary and sufficient to mediate these effects. These data establish the importance of Dnmt3a in the NAc in regulating cellular and behavioral plasticity to emotional stimuli.
Drugs of abuse dynamically regulate adult neurogenesis, which appears important for some types of learning and memory. Interestingly, a major site of adult neurogenesis, the hippocampus, is important in the formation of drug-context associations and in the mediation of drug-taking and drug-seeking behaviors in animal models of addiction. Correlative evidence suggests an inverse relationship between hippocampal neurogenesis and drug-taking or drug-seeking behaviors, but the lack of a causative link has made the relationship between adult-generated neurons and addiction unclear. We used rat intravenous cocaine self-administration in rodents, a clinically relevant animal model of addiction, to test the hypothesis that suppression of adult hippocampal neurogenesis enhances vulnerability to addiction and relapse. Suppression of adult hippocampal neurogenesis via cranial irradiation before drug-taking significantly increased cocaine self-administration on both fixed-ratio and progressive-ratio schedules, as well as induced a vertical shift in the dose-response curve. This was not a general enhancement of learning, motivation, or locomotion, because sucrose self-administration and locomotor activity were unchanged in irradiated rats. Suppression of adult hippocampal neurogenesis after drug-taking significantly enhanced resistance to extinction of drug-seeking behavior. These studies identify reduced adult hippocampal neurogenesis as a novel risk factor for addiction-related behaviors in an animal model of cocaine addiction. Furthermore, they suggest that therapeutics to specifically increase or stabilize adult hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse.
Relapse, a major problem in the treatment of cocaine addiction, is proposed to result in part from neuroadaptations in the hippocampus. We examined how a mediator of hippocampal neuroplasticity, adult neurogenesis in the subgranular zone (SGZ), was regulated by cocaine self-administration (CSA), and whether these changes were reversed by 4 weeks of withdrawal (CSA-WD) versus continued cocaine self-administration (CSA-CONT). Rats self-administered intravenous cocaine or saline for 3 weeks and were killed 2 h (CSA) or 4 weeks (CSA-WD, CSA-CONT) after injection with the S-phase marker bromodeoxyuridine (BrdU). Cells in several stages of adult neurogenesis were quantified: proliferating cells labeled by BrdU (2 h) or Ki-67; immature neurons labeled by doublecortin; and adultgenerated neurons labeled with BrdU (4 weeks) and the mature neuronal marker NeuN. CSA decreased proliferation in both the SGZ and the subventricular zone (SVZ), a source of adult-generated olfactory neurons, changes reversed by CSA-WD. Unexpectedly, CSA-WD and CSA-CONT resulted in more immature doublecortin-immunopositive (ϩ) neurons in the posterior SGZ and a normal number of adultgenerated BrdUϩ neurons in the SGZ, suggesting an enduring impact of CSA regardless of whether cocaine intake was stopped or continued. However, only CSA-WD rats had more adult-generated neurons with punctate BrdU staining, an indicator of enhanced maturity. These data suggest a mechanism for the cognitive and olfactory deficits seen in cocaine addicts, and further suggest that adult-generated neurons should be considered for their potential role in cocaine addiction and hippocampal-mediated relapse after cocaine withdrawal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.