The incidence and recurrence of hamstrings injuries are very high in sports, posing elevated performance and financial-related costs. Attempts to identify the risk factors involved in predicting vulnerability to hamstrings injury is important for designing exercise-based programs that aim to mitigate the rate and severity of hamstrings injuries and improve rehabilitation strategies. However, research has shown that non-modifiable risk factors may play a greater role than modifiable risk factors. Recognizing non-modifiable risk factors and understanding their implications will afford the prescription of better suited exercise programs, i.e., that are more respectful of the individual characteristics. In a nutshell, non-modifiable risk factors can still be acted upon, even if indirectly. In this context, an underexplored topic is how intra and inter- individual anatomic and physiologic variations in hamstrings (e.g., muscle bellies, fiber types, tendon length, aponeurosis width, attachment sites, sex- and age-related differences) concur to alter hamstrings injuries risk. Some anatomic and physiologic variations may be modifiable through exercise interventions (e.g., cross-sectional area), while others may not (e.g., supernumerary muscle bellies). This apparent dichotomy may hide a greater complexity, i.e., there may be risk factors that are partially modifiable. Therefore, we explored the available information on the anatomic variations of the hamstrings, providing a deeper insight into the individual risk factors for hamstrings injuries and contributing with better knowledge and potential applications toward a more individualized exercise prescription.
Landing kinetics and kinematics have historically been correlated with potential injury. A factor that requires more attention associated with its correlation to injury risk includes the impact of physiological fatigue. Fatigue is a multifaceted phenomenon involving central and peripheral factors resulting in a slowing or cessation of motor unit firing and a decrease in maximal force and power. Sports participation rarely results in momentary muscular failure occurring, as many sports consist of intermittent periods of activity that are interspersed with short rest periods that allow for recovery to take place. However, over the course of the competition, fatigue can still accumulate and can result in impaired performance. Current literature on the topic struggles to replicate the peripheral and central metabolic stresses required to induce a state of fatigue that would be equivalent to athletic exposure. Furthermore, the current literature fails to demonstrate consistency regarding the kinetic implications associated with fatigue, which may be secondary to the inconsistencies associated with fatigue protocols utilized. This article focuses on providing an overview of the current literature associated with fatigue’s impact on the kinetics associated with landing from a jump. The article will provide a prospective methodology utilizing repeat bouts of the Wingate Anaerobic Power Test. The proposed protocol may help further our understanding of the relationship between fatigue and lower extremity biomechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.