In this paper we evaluate the local seismic response for thirteen sites located in the municipalities of Arquata del Tronto and Montegallo, two areas which suffered heavy damage during the Mw 6.0 and Mw 5.4 earthquakes which struck Central Italy on August 24, 2016. The input dataset is made by ground motion recordings of 348 events occurred during the sequence. The spectral site response is estimated by the Generalized Inversion Technique and makes use of reference sites. The interpretation is further improved through the information provided by a reference-site independent method (i.e., the so called Receiver-Function Technique) and by the Horizontal-to-Vertical Spectral Ratios of ambient noise recordings. We also provide an independent estimate of the local amplification by comparing the Peak Ground Velocity and the Spectral Amplitudes observed at each site to the value estimated by well-established Ground Motion Prediction Equations for a rock-class site. The results obtained by the adopted methodologies are all highly consistent, and they emphasize the different seismic behavior of several sites at local scale. Thus, sites located on Quaternary deposits overlying the bedrock, such as Castro, Pretare, Spelonga, Pescara del Tronto, and Capodacqua feature some relevant amplifications in a medium (2-10 Hz) frequency range; two sites at Spelonga show amplifications also at low frequencies; three sites located on stiff formations, i.e. Uscerno, Balzo and Colle d'Arquata, respectively, feature either nearly neutral response or low amplification level. A probable topographic effect was identified at the rock site of Rocca di Arquata (MZ80).
a b s t r a c tA primary school in Rotonda was monitored during an on-going seismic sequence in the Pollino area, Southern Italy. The Reinforced Concrete (RC) building is a typical three story building with a concrete frame, bearing pre-cast slab flooring, concrete block internal walls and pre-cast external infill slabs. The monitoring began in September 2011 with a single station on top of the building, and after the M L = 5 mainshock occurred in October 2012 a network was completed with accelerometers on each floor and real-time streaming data was transmitted to the Istituto Nazionale di Oceanografia e Geofisica Sperimentale (UdineNorthern Italy). The school suffered no visible damage during the sequence. The real-time monitoring of the Rotonda school proved to be important for two reasons: (1) the large range of magnitudes and recorded peak accelerations allowed the study of the non-stationary frequency response; (2) the results also show how a simple, real-time monitoring system using cost-effective accelerometers could be used as a tool to provide information on the damage state and usability of the school.
In this article, we describe the infrastructure developed and managed by the Italian National Institute of Oceanography and Applied Geophysics – OGS for the seismological and geodetic monitoring of northeastern Italy. The infrastructure was constituted in response to the ML 6.4 Friuli destructive earthquake of 1976, with the main mandate of supporting civil protection emergency activities.
The OGS monitoring infrastructure is presently composed of a seismometric and a strong-motion network, complemented by a number of Global Navigation Satellite Systems stations, each delivering observational data in real time, which are collected and processed by the headquarters of the Center for Seismological Research of OGS in Udine. The OGS networks operate in close cooperation with Italian and international networks from neighboring countries, within the framework of the agreements for real-time data exchange, to obtain improved rapid earthquake location and magnitude estimations. Information regarding seismic events is released to the public through a dedicated web portal and, since 2013, through social media.
Aside from the standard monitoring activities (>30,000 events have been recorded since 1976), the OGS has progressively increased the number of services to the public and to the Civil Protection of the Friuli Venezia Giulia and Veneto regions. The high availability of good quality data has resulted in the enhancement of scientific products, including advanced seismological studies of the area, spanning broadly from seismic source characterization to engineering seismology.
In the future, the OGS networks are expected to further contribute to the development of seismological research and monitoring infrastructures of the Central European region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.