This paper reports on the design and characterization of a silicon nitride ring resonator-based device for biosensing manufactured with the STMicroelectronics 300 mm R&D Datacom Advanced PHotonic Nanoscale Environment (DAPHNE) industrial platform. The experimental results demonstrate a 300 nm/RIU bulk sensitivity and a 0.125 nm resonant peak shift per nanometer of biological adlayer thickness change. These results, comparable to the state of the art in ring resonator-based biosensors, demonstrate the potential of the DAPHNE industrial platform for manufacturing high-performance photonics biosensors at low cost.
Point-of-care tests (POCT) are important for detecting illnesses and monitoring patients without the need of a medical laboratory. To be useful, POCT must be sensitive, specific, integrated, and affordable. Since the early 2000s, integrated photonics have offered a possible solution for this problem. In particular, silicon micro-ring resonators represent a compact and sensitive choice known in the industry. This paper details the design, fabrication, and characterization of two methods for improving the performance of ring resonators by engineering their cross section. More precisely, improving devices made out of silicon nitride in an industrial environment to work in the infrared (around 1.31 µm).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.