SUMMARY
Trp63, a transcription factor related to the tumor suppressor p53, is activated by diverse stimuli and can initiate a range of cellular responses. TAp63 is the predominant Trp53 family member in primordial follicle oocytes and essential for their apoptosis triggered by DNA damage in vivo. Following γ-irradiation, induction of the pro-apoptotic BH3-only members Puma and Noxa was observed in primordial follicle oocytes from wt and Trp53−/− mice but not in those from TAp63 deficient mice. Primordial follicle oocytes from mice lacking Puma or both Puma and Noxa were protected from γ-irradiation-induced apoptosis and, remarkably, could produce healthy offspring. Hence, PUMA and NOXA are critical for DNA damage-induced, TAp63-mediated primordial follicle oocyte apoptosis. Thus, blockade of PUMA may protect fertility during cancer therapy and prevent premature menopause, improving women’s health.
Introduction
Improvement in the ability to target underlying drivers and vulnerabilities of high-grade serous ovarian cancer (HG-SOC) requires the development of molecularly annotated pre-clinical models reflective of clinical responses.
Methods
We generated patient-derived xenografts (PDXs) from consecutive, chemotherapy-naïve, human HG-SOC by transplanting fresh human HG-SOC fragments into subcutaneous and intra-ovarian bursal sites of NOD/SCID IL2Rγnull recipient mice, completed molecular annotation and assessed platinum sensitivity.
Results
The success rate of xenografting was 83%. Of ten HG-SOC PDXs, all contained mutations in TP53, two were mutated for BRCA1, three for BRCA2, and in two, BRCA1 was methylated. In vivo cisplatin response, determined as platinum sensitive (progression-free interval ≥100 d, n=4), resistant (progression-free interval <100 d, n=3) or refractory (n=3), was largely consistent with patient outcome. Three of four platinum sensitive HG-SOC PDXs contained DNA repair gene mutations, and the fourth was methylated for BRCA1. In contrast, all three platinum refractory PDXs overexpressed dominant oncogenes (CCNE1, LIN28B and/or BCL2).
Conclusions
Because PDX platinum response reflected clinical outcome, these annotated PDXs will provide a unique model system for preclinical testing of novel therapies for HG-SOC.
The number of primordial follicles initially established within the ovary is influenced by the extent of germ cell death during foetal ovarian development, but the mechanisms that mediate this death have not been fully uncovered. In this study, we identified BBC3 (PUMA) (p53 upregulated modulator of apoptosis, also known as BCL2-binding component 3), a pro-apoptotic BH3-only protein belonging to the BCL2 family, as a critical determinant of the number of germ cells during ovarian development. Targeted disruption of the Bbc3 gene revealed a significant increase in the number of germ cells as early as embryonic day 13.5. The number of germ cells remained elevated in Bbc3 K/K female mice compared with WT female mice throughout the remainder of embryonic and early postnatal life, resulting in a 1.9-fold increase in the number of primordial follicles in the ovary on postnatal day 10. The increase in the number of germ cells observed in the ovaries of Bbc3 K/K mice could not be attributed to the altered proliferative activity of germ cells within the ovaries. Furthermore, BBC3 was found to be not required for the massive germ cell loss that occurs during germ cell nest breakdown. Our data indicate that BBC3 is a critical regulator of germ cell death that acts during the migratory phase of oogenesis or very soon after the arrival of germ cells in the gonad and that BBC3-mediated cell death limits the number of primordial follicles established in the initial ovarian reserve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.