In this paper, we present preliminary results of the IPL project No. 198 BMulti-scale rainfall triggering models for Early Warning of Landslides (MUSE).^In particular, we perform an assessment of the geotechnical and hydrological parameters affecting the occurrence of landslides. The aim of this study is to improve the reliability of a physically based model high resolution slope stability simulator (HIRESSS) for the forecasting of shallow landslides. The model and the soil characterization have been tested in Northern Tuscany (Italy), along the Apennine chain, an area that is historically affected by shallow landslides. In this area, the main geotechnical and hydrological parameters controlling the shear strength and permeability of soils have been determined by in situ measurements integrated by laboratory analyses. Soil properties have been statistically characterized to provide more refined input data for the slope stability model. Finally, we have tested the ability of the model to predict the occurrence of shallow landslides in response to an intense meteoric precipitation.
Abstract. In this work, we apply a physically based model, namely the HIRESSS (HIgh REsolution Slope Stability Simulator) model, to forecast the occurrence of shallow landslides at the regional scale. HIRESSS is a physically based distributed slope stability simulator for analyzing shallow landslide triggering conditions during a rainfall event. The modeling software is made up of two parts: hydrological and geotechnical. The hydrological model is based on an analytical solution from an approximated form of the Richards equation, while the geotechnical stability model is based on an infinite slope model that takes the unsaturated soil condition into account. The test area is a portion of the Aosta Valley region, located in the northwest of the Alpine mountain chain. The geomorphology of the region is characterized by steep slopes with elevations ranging from 400 m a.s.l. on the Dora Baltea River's floodplain to 4810 m a.s.l. at Mont Blanc. In the study area, the mean annual precipitation is about 800–900 mm. These features make the territory very prone to landslides, mainly shallow rapid landslides and rockfalls. In order to apply the model and to increase its reliability, an in-depth study of the geotechnical and hydrological properties of hillslopes controlling shallow landslide formation was conducted. In particular, two campaigns of on site measurements and laboratory experiments were performed using 12 survey points. The data collected contributed to the generation of an input map of parameters for the HIRESSS model. In order to consider the effect of vegetation on slope stability, the soil reinforcement due to the presence of roots was also taken into account; this was done based on vegetation maps and literature values of root cohesion. The model was applied using back analysis for two past events that affected the Aosta Valley region between 2008 and 2009, triggering several fast shallow landslides. The validation of the results, carried out using a database of past landslides, provided good results and a good prediction accuracy for the HIRESSS model from both a temporal and spatial point of view.
We attempt a characterization of the geotechnical and hydrological properties of hillslope deposits, with the final aim of providing reliable data to distributed catchment-scale numerical models for shallow landslide initiation. The analysis is based on a dataset built up by means of both field tests and laboratory experiments over 100 sites across Tuscany (Italy). The first specific goal is to determine the ranges of variation of the geotechnical and hydrological parameters that control shallow landslide-triggering mechanisms for the main soil classes. The parameters determined in the deposits are: grain size distribution, Atterberg limits, porosity, unit weight, in situ saturated hydraulic conductivity and shear strength parameters. In addition, mineral phases recognition via X-ray powder diffraction has been performed on the different soil types. The deposits mainly consist of well-sorted silty sands with low plastic behavior and extremely variable gravel and clay contents. Statistical analyses carried on these geotechnical and hydrological parameters highlighted that it is not possible to define a typical range of values only with relation to the main mapped lithologies, because soil characteristics are not simply dependent on the bedrock type from which the deposits originated. A second goal is to explore the relationship between soil type (in terms of grain size distribution) and selected morphometric parameters (slope angle, profile curvature, planar curvature and peak distance). The results show that the highest correlation between soil grain size classes and morphometric attributes is with slope curvature, both profile and planar.
In this work we report the ongoing characterization of the Sos Enattos former mine (Sardinia, Italy), one of the two candidate sites for the Einstein Telescope (ET), the European third-generation underground interferometric detector of Gravitational Waves. The Sos Enattos site lies on a crystalline basement, made of rocks with good geomechanical properties, characterized by negligible groundwater. In addition, the site has a very low seismic background noise due to the absence of active tectonics involving Sardinia. Finally, the area has a low population density, resulting in a reduced anthropic noise even at the ground level. This location was already studied in 2012-2014 as a promising site for an underground detector. More recently, in March 2019, we deployed a new network of surface and underground seismometers at the site, that is currently monitoring the local seismic noise. Most of the energy carried by the seismic waves is due to the microseisms below 1 Hz, showing a significant correlation with the waves of the west Mediterranean sea. Above 1 Hz the seismic noise in the underground levels of the mine approaches the Peterson’s low noise model. Exploiting mine blasting works into the former mine, we were also able to perform active seismic measurements to evaluate the seismic waves propagation across the area. In conclusion we also give a first assessment about the acoustic and magnetic noise in this underground site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.