Digital Light Processing (DLP) technology exhibits the capability of producing components with complex structures for a variety of technical applications. Postprocessing of additively printed ceramic components has been shown to be an important step in determining the final product resolution and mechanical qualities, particularly with regard to distortions and resultant density. The goal of this research is to study the sintering process parameters to create a nearly fully dense, defect-free, ceramic component. A high-solid-loading alumina slurry with suitable rheological and photopolymerisable characteristics for DLP was created. TGA/DSC analysis was used to estimate thermal debinding parameters. The sintering process of the debound parts was studied by employing a numerical model based on thermo-viscoelasticity theory to describe the sintering process. The validated Finite Element Modelling (FEM) code was capable of predicting shrinkage and relative density changes during the sintering cycle, as well as providing meaningful information on the final shape. Archimedes’ principle and scanning electron microscope (SEM) were used to characterise the sintered parts and validate the numerical model. Samples with high relative density (>98.5%) were produced and numerical data showed close matches for predicted shrinkages and relative densities, with less than 2% mismatch between experimental results and simulations. The current model may allow to effectively predict the properties of alumina ceramics produced via DLP and tailor them for specific applications.
Exploring the feasibility of producing near-net-shape components with advanced properties and geometrical features via 3D printing has incrementally become the research focus of various studies. Digital light processing (DLP) technology can manufacture complex-structured components for various technical applications. The aims of this research were to investigate Al2O3 ceramic slurry preparation procedures to identify the ideal components to add to an in-house-developed ceramic slurry, to determine the optimal DLP printing parameters and conditions while understanding their effect on the green part properties and to evaluate the appropriate debinding regime to achieve fully dense crack-free fired parts capable of exhibiting translucent behaviours. The slurry obtained from the ball-milled powder at 800 rpm for 1 h, together with 2 wt.% BYK-145 as a dispersant and the highest achievable solid loading of 85 wt.%, showed the desired rheological and photopolymerisation properties. Full-factorial design of experiments (DOE) was employed to study the impact of the printing parameters on the density and the dimensions of the samples. Different debinding regimes were investigated and it was proven that the lowest debinding heat rate (0.2 °C/min) and longer holding times helped to reduce defects and promote densification (>99.0%), providing optimal grounds to obtain translucent fired parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.