A new versatile hydraulically powered quadruped robot (HyQ) has been developed to serve as a platform to study not only highly dynamic motions, such as running and jumping, but also careful navigation over very rough terrain. HyQ stands 1 m tall, weighs roughly 90 kg, and features 12 torque-controlled joints powered by a combination of hydraulic and electric actuators. The hydraulic actuation permits the robot to perform powerful and dynamic motions that are hard to achieve with more traditional electrically actuated robots. This paper describes design and specifications of the robot and presents details on the hardware of the quadruped platform, such as the mechanical design of the four articulated legs and of the torso frame, and the configuration of the hydraulic power system. Results from the first walking experiments are presented, along with test studies using a previously built prototype leg.
Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope (50 • ) V-shaped walls; an achievement that to the authors' best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain.
Abstract-We present a framework for dynamic quadrupedal locomotion over challenging terrain, where the choice of appropriate footholds is crucial for the success of the behaviour. We build a model of the environment on-line and on-board using an efficient occupancy grid representation. We use Any-time-Repairing A* (ARA*) to search over a tree of possible actions, choose a rough body path and select the locally-best footholds accordingly. We run a n-step lookahead optimization of the body trajectory using a dynamic stability metric, the Zero Moment Point (ZMP), that generates natural dynamic whole-body motions. A combination of floating-base inverse dynamics and virtual model control accurately executes the desired motions on an actively compliant system. Experimental trials show that this framework allows us to traverse terrains at nearly 6 times the speed of our previous work, evaluated over the same set of trials.
This paper presents the design of the hydraulically actuated quadruped robot HyQ2Max. HyQ2Max is an evolution of the 80kg agile and versatile robot HyQ. Compared to HyQ, the new robot needs to be more rugged, more powerful and extend the existing locomotion skills with self-righting capability. Since the robot's actuation system has an impact on many aspects of the overall design/specifications of the robot (e.g. payload, speed, torque, overall mass, compactness), this paper will pay special attention to the selection and sizing of the joint actuators. To obtain meaningful joint requirements for the new machine, we simulated 7 characteristic motions that cover a wide range of required behaviors of an agile rough terrain robot, including trotting on rough terrain, stair climbing, push recovery, self-righting, etc. We will describe how to use the obtained joint requirements for the selection of the hydraulic actuator types, four-bar linkage parameters and valve size. Poorly sized actuators may lead to limited robot capabilities or higher cost, weight, energy consumption and cooling requirements. The main contributions of this paper are (1) a novel design of an agile quadruped robot capable of performing trotting/crawling over flat/uneven terrain, balancing and self-righting; (2) a detailed method to find suitable hydraulic cylinder/valve properties and linkage parameters with a specific focus on optimizing the actuator areas; and (3) to the best knowledge of the authors, the most complete review of hydraulic quadruped robots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.