This paper presents the design of the hydraulically actuated quadruped robot HyQ2Max. HyQ2Max is an evolution of the 80kg agile and versatile robot HyQ. Compared to HyQ, the new robot needs to be more rugged, more powerful and extend the existing locomotion skills with self-righting capability. Since the robot's actuation system has an impact on many aspects of the overall design/specifications of the robot (e.g. payload, speed, torque, overall mass, compactness), this paper will pay special attention to the selection and sizing of the joint actuators. To obtain meaningful joint requirements for the new machine, we simulated 7 characteristic motions that cover a wide range of required behaviors of an agile rough terrain robot, including trotting on rough terrain, stair climbing, push recovery, self-righting, etc. We will describe how to use the obtained joint requirements for the selection of the hydraulic actuator types, four-bar linkage parameters and valve size. Poorly sized actuators may lead to limited robot capabilities or higher cost, weight, energy consumption and cooling requirements. The main contributions of this paper are (1) a novel design of an agile quadruped robot capable of performing trotting/crawling over flat/uneven terrain, balancing and self-righting; (2) a detailed method to find suitable hydraulic cylinder/valve properties and linkage parameters with a specific focus on optimizing the actuator areas; and (3) to the best knowledge of the authors, the most complete review of hydraulic quadruped robots.
Robots with legs and arms have the potential to support humans in dangerous, dull or dirty tasks. A major motivation behind research on such robots is their potential versatility. However, these robots come at a high price in mechanical and control complexity. Hence, until they can demonstrate a clear advantage over their simpler counterparts, robots with arms and legs will not fulfill their true potential. In this paper, we discuss the opportunities for versatile robots that arise by actively controlling the mechanical impedance of joints and particularly legs. In contrast to passive elements such as springs, active impedance is achieved by torque-controlled joints allowing real-time adjustment of stiffness and damping. Adjustable stiffness and damping in real-time is a fundamental building block towards versatility. Experiments with our 80 kg hydraulic quadruped robot HyQ demonstrate that active impedance alone (i.e. no springs in the structure) can successfully emulate passively compliant elements during highly dynamic locomotion tasks (running, jumping and hopping); and that no springs are needed to protect the actuation system. Here we present results of a flying trot, also referred to as a running trot. To the best of the authors' knowledge this is the first time a flying trot has been successfully implemented on a robot without passive elements such as springs. A critical discussion on the pros and cons of active impedance concludes the paper. This article is an extension of our previous work presented at the International Symposium on Robotics Research (ISRR) 2013.
The quality of visual feedback can vary significantly on a legged robot meant to traverse unknown and unstructured terrains. The map of the environment, acquired with online state-of-the-art algorithms, often degrades after a few steps, due to sensing inaccuracies, slippage and unexpected disturbances. If a locomotion algorithm is not designed to deal with this degradation, its planned trajectories might endup to be inconsistent in reality. In this work, we propose a heuristic-based planning approach that enables a quadruped robot to successfully traverse a significantly rough terrain (e.g. stones up to 10 cm of diameter), in absence of visual feedback. When available, the approach allows also to leverage the visual feedback (e.g. to enhance the stepping strategy) in multiple ways, according to the quality of the 3D map. The proposed framework also includes reflexes, triggered in specific situations, and the possibility to estimate online an unknown time-varying disturbance and compensate for it. We demonstrate the effectiveness of the approach with experiments performed on our quadruped robot HyQ (85 kg), traversing different terrains, such as: ramps, rocks, bricks, pallets and stairs. We also demonstrate the capability to estimate and compensate for external disturbances by showing the robot walking up a ramp while pulling a cart attached to its back.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.