Background and aimsCachexia is a syndrome characterized by marked involuntary loss of body weight. Recently, adipose tissue (AT) wasting has been shown to occur before the appearance of other classical cachexia markers. We investigated the composition and rearrangement of the extracellular matrix, adipocyte morphology and inflammation in the subcutaneous AT (scAT) pad of gastrointestinal cancer patients.MethodsSurgical biopsies for scAT were obtained from gastrointestinal cancer patients, who were signed up into the following groups: cancer cachexia (CC, n = 11), weight‐stable cancer (WSC, n = 9) and weight‐stable control (non‐cancer) (control, n = 7). The stable weight groups were considered as those with no important weight change during the last year and body mass index <25 kg/m2. Subcutaneous AT fibrosis was quantified and characterized by quantitative PCR, histological analysis and immunohistochemistry.ResultsThe degree of fibrosis and the distribution and collagen types (I and III) were different in WSC and CC patients. CC patients showed more pronounced fibrosis in comparison with WSC. Infiltrating macrophages surrounding adipocytes and CD3 Ly were found in the fibrotic areas of scAT. Subcutaneous AT fibrotic areas demonstrated increased monocyte chemotactic protein 1 (MCP‐1) and Cluster of Differentiation (CD)68 gene expression in cancer patients.ConclusionsOur data indicate architectural modification consisting of fibrosis and inflammatory cell infiltration in scAT as induced by cachexia in gastrointestinal cancer patients. The latter was characterized by the presence of macrophages and lymphocytes, more evident in the fibrotic areas. In addition, increased MCP‐1 and CD68 gene expression in scAT from cancer patients may indicate an important role of these markers in the early phases of cancer.
BackgroundCancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients. Fibrosis results from uncontrolled ECM synthesis, a process in which, transforming growth factor-beta (TGFβ) plays a pivotal role. So far, the mechanisms involved in adipose tissue (AT) re-arrangement, and the role of TGFβ in inducing AT remodeling in weight-losing cancer patients are poorly understood. This study examined the modulation of ECM components mediated by TGFβ pathway in fibrotic AT obtained from cachectic gastrointestinal cancer patients.MethodsAfter signing the informed consent form, patients were enrolled into the following groups: cancer cachexia (CC, n = 21), weight-stable cancer (WSC, n = 17), and control (n = 21). The total amount of collagen and elastic fibers in the subcutaneous AT was assessed by histological analysis and by immunohistochemistry. TGFβ isoforms expression was analyzed by Multiplex assay and by immunohistochemistry. Alpha-smooth muscle actin (αSMA), fibroblast-specific protein (FSP1), Smad3 and 4 were quantified by qPCR and/or by immunohistochemistry. Interleukin (IL) 2, IL5, IL8, IL13 and IL17 content, cytokines known to be associated with fibrosis, was measured by Multiplex assay.ResultsThere was an accumulation of collagen and elastic fibers in the AT of CC, as compared with WSC and controls. Collagens type I, III, VI, and fibronectin expression was enhanced in the tissue of CC, compared with both WSC and control. The pronounced expression of αSMA in the surrounding of adipocytes, and the increased mRNA content for FSP1 (20-fold) indicate the presence of activated myofibroblasts; particularly in CC. TGFβ1 and TGFβ3 levels were up-regulated by cachexia in AT, as well in the isolated adipocytes. Smad3 and Smad4 labeling was found to be more evident in the fibrotic areas of CC adipose tissue.ConclusionsCancer cachexia promotes the development of AT fibrosis, in association with altered TGFβ signaling, compromising AT organization and function.
The purpose of the present study was to discover the relative potency of onion, Allium cepa, with respect to its hypoglycaemic and hypolipidaemic effects on the diabetic situation, and the association of these effects with the potential against oxidative stress. Male Wistar rats were divided into four groups. A normal control (group A), and a non-diabetic group (group B) were treated daily with 1 ml A. cepa solution (0.4 g A. cepa/rat). Groups C and D were made diabetic by an intraperitoneal injection of streptozotocin (STZ) (60 mg/kg body weight) in citrate buffer (pH 6.3). These animals (groups C and D) were the STZ diabetic control and STZ diabetic rats with onion intake, respectively. Onion increased the fasting serum high-density lipoprotein levels, and demonstrated alleviation of hyperglycaemia in STZ diabetic rats. The hypoglycaemic and hypolipidaemic actions of A. cepa were associated with antioxidant activity, since onion decreased superoxide dismutase activities while no increased lipid hydroperoxide and lipoperoxide concentrations were observed in diabetic rats treated with A. cepa.
The syndrome of cancer cachexia is accompanied by several alterations in lipid metabolism, and the liver is markedly affected. Previous studies showed that moderate exercise training may prevent liver fat accumulation through diminished delivery of lipids to the liver, increased hepatic oxidation and increased incorporation of triacylglycerol (TAG) into very low density lipoprotein (VLDL). Our aim was to examine the influence of moderate intensity training (8 weeks) upon TAG content, VLDL assembly and secretion, apolipoprotein B (apoB) and microsomal transfer protein (MTP) gene expression in the liver of cachectic tumour-bearing rats. Animals were randomly assigned to a sedentary control (SC), sedentary tumour-bearing (ST) or exercise-trained control (EC) or to an exercise trained tumour-bearing (ET) group. Trained rats ran on a treadmill (60% VO(2max)) for 60 min day(-1), 5 day week(-1), for 8 weeks. TAG content and the rate of VLDL secretion (followed for 3 h), as well as mRNA expression of apoB and MTP, and total cholesterol, VLDL-TAG, VLDL-cholesterol, high density lipoprotein cholesterol (HDL-cholesterol) and tumour weight were evaluated. VLDL-cholesterol showed a decrease in ST (p < 0.05) in relation to SC. Serum TAG, VLDL-TAG and tissue TAG content were all increased in ST (p < 0.01), when compared with SC. ST showed a lower rate of VLDL secretion (p < 0.05) and reduced expression of apoB (p < 0.001) and MTP (p < 0.001), when compared with SC. These parameters were restored to control values (p < 0.05) when the animals were submitted to the exercise training protocol. Tumour weight decreased 10-fold after training (p < 0.001). It is possible to affirm, therefore, that endurance training promoted the re-establishment of lipid metabolism in cachectic tumour-bearing animals, especially in relation to VLDL secretion and assembly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.