Cachexia affects about 80% of gastrointestinal cancer patients. This multifactorial syndrome resulting in involuntary and continuous weight loss is accompanied by systemic inflammation and immune cell infiltration in various tissues. Understanding the interactions among tumor, immune cells, and peripheral tissues could help attenuating systemic inflammation. Therefore, we investigated inflammation in the subcutaneous adipose tissue and in the tumor, in weight stable and cachectic cancer patients with same diagnosis, in order to establish correlations between tumor microenvironment and secretory pattern with adipose tissue and systemic inflammation. Infiltrating monocyte phenotypes of subcutaneous and tumor vascular-stromal fraction were identified by flow cytometry. Gene and protein expression of inflammatory and chemotactic factors was measured with qRT-PCR and Multiplex Magpix® system, respectively. Subcutaneous vascular-stromal fraction exhibited no differences in regard to macrophage subtypes, while in the tumor, the percentage of M2 macrophages was decreased in the cachectic patients, in comparison to weight-stable counterparts. CCL3, CCL4, and IL-1β expression was higher in the adipose tissue and tumor tissue in the cachectic group. In both tissues, chemotactic factors were positively correlated with IL-1β. Furthermore, positive correlations were found for the content of chemoattractants and cytokines in the tumor and adipose tissue. The results strongly suggest that the crosstalk between the tumor and peripheral tissues is more pronounced in cachectic patients, compared to weight-stable patients with the same tumor diagnosis.
BackgroundCancer cachexia is a multifactorial syndrome that dramatically decreases survival. Loss of white adipose tissue (WAT) is one of the key characteristics of cachexia. WAT wasting is paralleled by microarchitectural remodeling in cachectic cancer patients. Fibrosis results from uncontrolled ECM synthesis, a process in which, transforming growth factor-beta (TGFβ) plays a pivotal role. So far, the mechanisms involved in adipose tissue (AT) re-arrangement, and the role of TGFβ in inducing AT remodeling in weight-losing cancer patients are poorly understood. This study examined the modulation of ECM components mediated by TGFβ pathway in fibrotic AT obtained from cachectic gastrointestinal cancer patients.MethodsAfter signing the informed consent form, patients were enrolled into the following groups: cancer cachexia (CC, n = 21), weight-stable cancer (WSC, n = 17), and control (n = 21). The total amount of collagen and elastic fibers in the subcutaneous AT was assessed by histological analysis and by immunohistochemistry. TGFβ isoforms expression was analyzed by Multiplex assay and by immunohistochemistry. Alpha-smooth muscle actin (αSMA), fibroblast-specific protein (FSP1), Smad3 and 4 were quantified by qPCR and/or by immunohistochemistry. Interleukin (IL) 2, IL5, IL8, IL13 and IL17 content, cytokines known to be associated with fibrosis, was measured by Multiplex assay.ResultsThere was an accumulation of collagen and elastic fibers in the AT of CC, as compared with WSC and controls. Collagens type I, III, VI, and fibronectin expression was enhanced in the tissue of CC, compared with both WSC and control. The pronounced expression of αSMA in the surrounding of adipocytes, and the increased mRNA content for FSP1 (20-fold) indicate the presence of activated myofibroblasts; particularly in CC. TGFβ1 and TGFβ3 levels were up-regulated by cachexia in AT, as well in the isolated adipocytes. Smad3 and Smad4 labeling was found to be more evident in the fibrotic areas of CC adipose tissue.ConclusionsCancer cachexia promotes the development of AT fibrosis, in association with altered TGFβ signaling, compromising AT organization and function.
A low-calorie diet is associated with an improvement in the systemic inflammatory status. This seems to be due to energy restriction rather than to adipose mass loss, since inflammatory levels return to baseline soon after weight stabilisation. Furthermore, a negative energy balance and fat mobilisation are associated with increased subcutaneous cytokine adipose expression.
Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis. It secretes several cytokines capable of directly regulating intermediate metabolism. A common pathway in the regulation of the expression of pro-inflammatory cytokines in WAT is the activation of the nuclear transcription factor kappa-B (NF-κB). We have examined the gene expression of the subunits NF-κBp65 and NF-κBp50, as well as NF-κBp65 and NF-κBp50 binding, the gene expression of pro-inflammatory mediators under NF-κB control (IL-1β, IL-6, INF-γ, TNF-α, MCP-1), and its inhibitory protein, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α). The observational study involved 35 patients (control group, n = 12 and cancer group, n = 23, further divided into cachectic and non-cachectic). NF-κBp65 and its target genes expression (TNF-α, IL-1β, MCP-1 and IκB-α) were significantly higher in cachectic cancer patients. Moreover, NF-κBp65 gene expression correlated positively with the expression of its target genes. The results strongly suggest that the NF-κB pathway plays a role in the promotion of WAT inflammation during cachexia.
Background Cachexia is a paraneoplastic syndrome related with poor prognosis. The tumour micro‐environment contributes to systemic inflammation and increased oxidative stress as well as to fibrosis. The aim of the present study was to characterise the inflammatory circulating factors and tumour micro‐environment profile, as potentially contributing to tumour fibrosis in cachectic cancer patients. Methods 74 patients (weight stable cancer n = 31; cachectic cancer n = 43) diagnosed with colorectal cancer were recruited, and tumour biopsies were collected during surgery. Multiplex assay was performed to study inflammatory cytokines and growth factors. Immunohistochemistry analysis was carried out to study extracellular matrix components. Results Higher protein expression of inflammatory cytokines and growth factors such as epidermal growth factor, granulocyte–macrophage colony‐stimulating factor, interferon‐α, and interleukin (IL)‐8 was observed in the tumour and serum of cachectic cancer patients in comparison with weight‐stable counterparts. Also, IL‐8 was positively correlated with weight loss in cachectic patients (P = 0.04; r = 0.627). Immunohistochemistry staining showed intense collagen deposition (P = 0.0006) and increased presence of α‐smooth muscle actin (P < 0.0001) in tumours of cachectic cancer patients, characterizing fibrosis. In addition, higher transforming growth factor (TGF)‐β1, TGF‐β2, and TGF‐β3 expression (P = 0.003, P = 0.05, and P = 0.047, respectively) was found in the tumour of cachectic patients, parallel to p38 mitogen‐activated protein kinase alteration. Hypoxia‐inducible factor‐1α mRNA content was significantly increased in the tumour of cachectic patients, when compared with weight‐stable group (P = 0.005). Conclusions Our results demonstrate TGF‐β pathway activation in the tumour in cachexia, through the (non‐canonical) mitogen‐activated protein kinase pathway. The results show that during cachexia, intratumoural inflammatory response contributes to the onset of fibrosis. Tumour remodelling, probably by TGF‐β‐induced transdifferentiation of fibroblasts to myofibroblasts, induces unbalanced inflammatory cytokine profile, angiogenesis, and elevation of extracellular matrix components (EMC). We speculate that these changes may affect tumour aggressiveness and present consequences in peripheral organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.